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IV-1. Introduction  

There are two types of phase transformations, depending on the mode of substance 

transfer from the initial phase (parent phase): 

Firstly, the most common type in practice involves uncoordinated atomic movements. 

This process leads to the destruction of the lattice structure of the original phase and the 

reconstruction of the lattice structure of the new phase. Phase transformations of this nature 

involve mechanisms for transferring substances within a solid medium, specifically diffusion. 

When the phase change is accompanied by a change in chemical composition, atoms move over 

distances that are significantly larger than the interatomic distances. 

The second type involves crystallographic changes without a change in chemical 

composition. These transformations involve movements of atoms over short distances. The 

displacements are coordinated (known as shear structures), meaning each atom retains its 

neighboring atoms. An example is the martensitic transformation in steels, which produces 

stainless steel blades that maintain their sharpness for an extended period due to their hardness. 

It is essential to study the kinetics of transformations before examining the different types 

of solid-state transformations in alloys. 

IV-2. General characteristics of solid-state transformations 

The general characteristics of phase transformation kinetics can be summarized as 

follows: 

a. The initiation of reactions is challenging, leading to significant delays in time or temperature, 

depending on whether the reaction is conducted at a constant or variable temperature. 

b. The initiation of reactions is influenced by defects in the crystal lattice and, consequently, by 

factors that alter the number and nature of these defects (such as hardening). 

c. The subsequent evolution of reactions is often governed by the diffusion of lattice species 

within the matrix. Therefore, the effect of temperature on the reaction rate primarily results 

from its impact on the diffusion coefficients. 

These characteristics are common to most solid-state transformations that involve a 

change in the number of phases, which are known as first-order transformations. However, it is 
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challenging to draw a clear distinction between first-order and second-order transformations, 

as the appearance or disappearance of a phase in a solid system can sometimes occur gradually, 

both thermodynamically and kinetically. 

IV-3. Initiation of reactions proceeding by nucleation and growth 

Among the transformations that can occur in metals or alloys in the solid state, a 

particularly important category is those in which a new phase forms within an initially 

homogeneous single-phase medium. From a purely chemical perspective, this situation can 

arise from various types of reactions, including: 

 Precipitation of an intermetallic compound in a supersaturated solid solution during a 

decrease in temperature: An example of this type of reaction is the precipitation of the 

compound Al₃Mg₂ from a solid solution of Al-Mg, which is homogeneous at high 

temperatures, upon slow cooling. 

Magnesium-rich solid solution→ Solid solution poor in magnesium + Al3Mg2 

 Allotropic transformation of a pure metal through a sudden transition between stability 

domains: An example of this type of transformation is the cooling-induced change in 

iron from its gamma phase (Feγ, face-centered cubic or FCC) to its alpha phase (Feα, 

body-centered cubic or BCC). 

 The eutectoid transformation of a solid solution results in the formation of two new 

phases rather than just one. A well-known example of this process is the formation of 

the eutectoid: α + Fe₃C, within a homogeneous solid solution of 0.8% carbon in γ iron 

below 727°C. The transformation can be represented as: 

Solid solution γ ↔ α + Fe3C 

 From a morphological perspective, these different transformations begin in a similar 

manner. The alloy is initially heated to a high temperature where it exists as a single 

homogeneous phase. Upon cooling to a temperature where this phase becomes unstable, small 

crystalline particles of the new phase start to appear in a dispersed state. These particles grow 

at the expense of the matrix until, in the case of an allotropic transformation, they completely 

replace it. 
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In the case of precipitation within a supersaturated solution, the particles cease to grow 

once the solution reaches its new equilibrium state. This process is typically divided into two 

successive stages: nucleation and growth. 

IV-4. Classical theory of nucleation 

The theory to be developed focuses on how the stability and growth potential of a nucleus 

of the new phase evolve in relation to its size. 

Nucleation is the phenomenon by which a new phase begins to form within the parent 

phase. There are two types of nucleation: homogeneous and heterogeneous. Homogeneous 

nucleation theoretically occurs only in a perfect crystal, where the locations of precipitate 

formation are indeterminate and randomly distributed within the matrix. In contrast, 

heterogeneous nucleation occurs at crystal defects or surfaces, which serve as preferential sites 

for the formation of new phases. 

IV-4-1. Homogeneous nucleation 

When a supersaturated solid solution (the parent phase) is allowed to evolve, 

concentration fluctuations occur, leading to the formation of clusters of solute at a temperature 

where the parent phase becomes unstable. The formation of a cluster with radius rrr (the new 

phase) alters the energy of the system. The nucleus of the new phase becomes stable only when 

it reaches a certain critical volume, which can be evaluated as follows: 

 The free enthalpy of the initial nucleus must be less than 0 for the nucleus to be stable. 

 The change in the free enthalpy of the system is the sum of three contributions: 

1- If ΔGv  is the change in free energy per unit volume at temperatures where the 

new phase is stable, then the formation of a volume V of this phase results in a decrease 

in free energy by VΔGv (noted with a negative sign in the expression for ΔG). It is 

important to note that ΔGv is zero at the equilibrium temperature Te. 

2- The creation of an interface with a total surface area A results in an increase in 

the free energy of the nucleus by Aγ, where γ is the specific interfacial energy between 

the parent phase and the new, presumably isotropic phase. 

3- When the volume of the nucleus of the new phase differs from the volume 

initially occupied by the parent phase (which is generally the case), the free energy of 

the nucleus increases by an amount proportional to V, due to a stress energy per unit 

volume in the new phase, denoted as ΔGc . 
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The total change in free energy associated with the formation of a nucleus with volume 

V is therefore expressed as: 

                         ΔG = -VΔGv + Aγ + VΔGc = - V (ΔGv – ΔGc) + Aγ                          (IV-1) 

Assuming that the interface energy is independent of orientation and that the germ is 

spherical with a radius r, the previous equation simplifies to: 

                                   ∆𝐺(𝑟) = −
4

3
𝜋𝑟3 ∗ (∆𝐺𝑣 − ∆𝐺𝑐) + 𝛾 ∗ (4𝜋𝑟2)                              (IV-2) 

The variation in the free energy of nucleus formation thus depends on its size r (see Figure 

IV-1). 

 

 

 

 

 

 

 

 

 

 

 

We observe that if the size of the germs is small, the interface energy is dominant, making 

the germs unstable and causing them to spontaneously disintegrate within the matrix. 

Conversely, if the germ size is sufficiently large, the driving force becomes dominant, and the 

germs can evolve and become stable. Thus, there is a critical germ size threshold beyond which 

germination can occur and transformation can begin. By differentiating the equation for ΔG, 

we can determine the critical germ size r*: 

                                          r∗ =
2γ

(∆Gv− ∆Gc)
                                                      (IV-3) 

Fig. IV-1 : Evolution of the free energy of formation of a spherical nucleus as a function of 

its radius r. 
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This yields the value of the activation free energy barrier for the formation of a critical 

germ: 

                                       ∆𝐺∗ =
16𝜋𝛾3

3 (∆Gv− ∆Gc)
                                            (IV-4) 

 Homogeneous nucleation rate 

Statistically, the number of germs larger than the critical size is given by: 

                                              𝑁∗ = 𝑁0𝑒𝑥𝑝 (−
∆𝐺∗

𝐾𝑇
)                                        (IV-5) 

N0, being the number of atoms in the matrix per unit volume. 

The greater the number of atoms with sufficient energy to overcome the energy barrier, 

the higher the probability of germ formation. This means that the germination rate is 

proportional to exp 𝑒𝑥𝑝 (−
∆𝐺∗

𝐾𝑇
) and to the diffusion rate of the atoms to the germs 𝑒𝑥𝑝 (−

∆𝐺𝐷

𝐾𝑇
). 

In general, the germination rate can be expressed as: 

                                         𝑉ℎ𝑜𝑚𝑜 = 𝑊𝑁0𝑒𝑥𝑝 (−
∆𝐺𝐷
𝐾𝑇

)𝑒𝑥𝑝 (−
∆𝐺∗

𝐾𝑇
)                            (IV-6) 

Where W is a factor that accounts for the vibrational frequency of the atoms. 

IV-4-2. Heterogeneous nucleation   

 Nucleation, whether in a solid or a liquid, is often heterogeneous. Favorable germination 

sites include structural defects such as dislocations, grain boundaries, inclusions, free surfaces, 

and vacancies under supersaturation. These sites are in a non-equilibrium state, resulting in 

atoms in the immediate vicinity being in a higher energy state, which increases the system’s 

free energy. If the formation of a germ of the new phase leads to the elimination of a defect, the 

free energy of the entire system decreases by an amount equal to the defect's free energy, ΔGd. 

Thus, the defect energy plays a similar role to that of the energy per unit volume, serving as a 

driving force. Consequently, the expression for the variation in free energy associated with the 

formation of a germ of volume V is: 

                                       ΔG hété = -V (ΔGv - ΔGc)+ Aγ – ΔGd                                                             (IV-7) 

An example of this type of germination is germination on grain boundaries: 
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 Let θ be the wetting angle of the particle on the grain boundary (see Figure IV-2 (a)), and 

r its radius of curvature (assuming a double spherical calotte geometry). If γαα is the interfacial 

energy and γαβ  is the interface energy between the two phases, α (the parent phase) and β (the 

new phase), then the free enthalpy of creating the germ in heterogeneous germination is derived 

from that obtained in homogeneous nucleation. 

 

 

 

 

  

 

 

 

 

 

 

 

 Heterogeneous nucleation rate 

 Nucleation occurs more rapidly at heterogeneities. However, the impact of these 

heterogeneities on the germination rate and the transformation of the alloy depends on their 

concentration. In homogeneous germination, every atom serves as a potential germination site. 

In contrast, for germination at grain boundaries, only the atoms located at the grain boundaries 

can participate in the process. If the concentration of germs at heterogeneous sites per unit 

volume is C1, the rate of heterogeneous germination is given by the following relationship: 

                                        𝑉ℎ𝑒𝑡𝑟𝑜 = 𝑊𝐶1𝑒𝑥𝑝 (−
∆𝐺𝐷
𝐾𝑇

)𝑒𝑥𝑝 (
∆𝐺∗

𝐾𝑇
)                                 (IV-8) 

 

 

Fig. IV-2: Heterogeneous nucleation: (a) schematic representation and (b) reduction in the energy barrier 

to nucleation, while the critical radius remains unchanged. 
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IV-5. Description of the overall behavior of phase transformations according to Avrami's 

theory: 

 Solid-state phase transformations that proceed via a nucleation mechanism generally 

follow the transformation law proposed by Avrami. The Avrami treatment provides an equation 

that allows for the calculation of the extent of phase transformation as a function of time. 

 The formation and growth of a new β phase within an initial α phase can be envisioned 

as follows: 

 Initially, at time t0, a germ appears within the parent phase α. This germ represents the 

nascent β phase. The time required for the formation of these germs is referred to as the 

incubation period. 

 In the next stage, the germs grow at the expense of the α phase, contributing to the 

progress of the transformation (see Fig. IV-3). At time tf, the transformation ceases when 

the initial phase is entirely converted into the new phase β. The growth of the new phase 

may not proceed uniformly in all directions. 

 The growth of the new phase proceeds freely during the initial stages of the 

transformation. However, this behavior changes once a certain conversion rate is reached, at 

which point the growing phases begin to contact each other. Taking this characteristic into 

account and based on the principles of nucleation and growth, we derive a general equation that 

describes the conversion rate (volume fraction f) as a function of the transformation time: 

                                                     f = 1 – exp (- K t)n                                                                                       (IV-9) 

 This is Avrami's equation, where nnn varies from 1 to 4 depending on the type of 

transformation, and K is a function of the nucleation and growth processes, which are strongly 

dependent on temperature. By knowing K as a function of temperature, one can calculate the 

time required to achieve a specified conversion rate (e.g., 1%, 50%, 90%) at a given 

temperature. 
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IV-6. Diagrams TTT (Transformation/Time/Temperature) 

From Avrami's expression, we can plot the transformation fraction (f) curves as a function 

of time and temperature, creating TTT (Time-Temperature-Transformation) diagrams. 

Typically, two conversion rates are selected, which are determined experimentally and 

characterize the start (e.g., 1% conversion) and end (e.g., 99% conversion) of the reaction. This 

is illustrated in Figure IV-4-(a). The figure shows how to determine the values of td and tf at a 

temperature T=T1 within the transformation interval. Figure IV-4-(b) establishes the 

relationship between the TTT diagram and the isotherm at temperature T=T1. These TTT 

diagrams help in determining the appropriate heat treatment needed to achieve a specific 

structural state in a material. Although TTT diagrams can theoretically be obtained for any 

phase transformation, they are challenging to determine experimentally for the crystallization 

of metals and metal alloys due to the rapid nature of the transformation. 

Reading a TTT diagram is straightforward. For example, consider selecting a temperature 

Tl<Te and analyzing the progress of the transformation. After rapidly cooling (quenching) the 

material from T>Te down to Tl (solid line in Figure IV-4 (a)), the material is held at a constant 

temperature Tl. The transformation effectively begins at time t=td. The transformation proceeds 

initially at an increasing rate because the rate of transformation is proportional to the volume 

t1/2 

f 

Log t 

Fig. IV-3- : Isothermal variation of the volume fraction f of the transformed phase as a function of the logarithm of 

time t according to the Avrami equation. Here, f represents the fraction of the β phase transformed at 

time t, while (1−f) denotes the fraction of the untransformed α phase. 

td 
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transformed, as illustrated in Figure IV-4 (b). Subsequently, the transformation rate gradually 

decreases as the growing grains start to interact with each other. 

Practically, the transformation stops when the transformed volume reaches 99% (at t=tf). 

The dashed curve in Figure IV-4-(a) represents the end of the isothermal transformation as a 

function of the transformation temperature. 

A typical example of a solid-solid transformation illustrated by TTT diagrams is the 

eutectoid transformation in steels containing 0.8% mass. C. This transformation occurs from 

austenite to form ferrite and iron carbides (cementite) (see Fig. IV-5). 
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Fig. IV-4: Schematic appearance of the TTT diagram of a phase transformation: (a) Phase transformation 

curves as a function of time and temperature for two values of the conversion rate, characterizing the 

start (1% conversion, td) and the end (99% conversion, tf) of the reaction. tmin represents the minimum 

time required for the transformation to commence. (b) The relationship between the TTT diagram and 

the transformation isotherm at temperature T=Tl. 
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Fig. IV-5- : Part of the Fe-Fe₃C phase diagram (a) and the TTT diagram for the eutectoid 

transformation in this system (b). 
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IV-7. Spinodal decomposition theory 

 The previous theory attributed the delay in germination to the positive energy required 

for the creation of interfaces, which was considered the source of the barrier. However, an 

alternative analysis of the phenomenon has been known for some years, and we will briefly 

describe it. 

IV-7-1. Definition of Spinodal decomposition  

 Spinodal decomposition is a phase transformation phenomenon that occurs when a 

continuous solid solution is cooled below a critical temperature. 

 Figure IV-6(a) shows the phase equilibrium diagram of the A-B binary system. Above 

the critical temperature and below the melting temperature, this system exists as a continuous 

solid solution, α. 

 Below Tc, an isothermal section of the diagram at temperature T′ reveals three distinct 

zones based on the value of x (the composition of element B). 

 a single-phase zone consisting of an A-rich phase α1 for 0 < x < x1, 

 a two-phase zone comprising both phases for x1<x< x4, 

 a single-phase zone consisting of a B-rich phase, α2, for x4 < x < 1.  

 The phenomenon of isomorphic demixing in the continuous solid solution for x1<x<x4  is 

illustrated in Figure IV-6(b). This figure shows the variation of the molar free enthalpy of the 

system as a function of composition at temperature T′. 

 For the two solid solutions to be in equilibrium with each other, the chemical potential of 

component A must be the same in both solid solutions, α₁ and α₂. The same applies to the 

chemical potential of component B. The rule of the common tangent to the free molar enthalpy 

curve of the phase allows us to determine the compositions of the solid solution α₁ saturated 

with B (x1) and the solid solution α₂ saturated with A (x4) in equilibrium with each other. 

 The range of points x1 and x4, obtained at different temperatures, defines a curve on the 

equilibrium diagram that serves as the boundary between the single-phase regions and the two-

phase region. The area where the two solid solutions, α₁ and α₂, coexist is referred to as the 

miscibility gap. 
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 In addition to its three domains, the molar free enthalpy curve of the continuous solid 

solution has two points of inflection, x2 and x3, which become significant when examining the 

mechanism of transformation from a single-phase system to a two-phase system. 

 In the region between the two inflection points, x2 and x3, where ∂2G/∂X2<0, the single-

phase solid solution is unstable and undergoes spinodal decomposition. In the composition 

ranges x2−x1 and x4−x3, the single-phase solid solution is metastable and will decompose into 

two solid solutions through a nucleation and growth mechanism, given sufficient activation 

energy. 
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Fig.IV-6: (a) Phase diagram of a binary system showing a miscibility gap.  

(b) Variation of the free enthalpy of a solid solution at temperature T′. 
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IV-7-2. Mode of decomposition 

 To explain the mode of decomposition, we refer to the molar free enthalpy curve of the 

single-phase binary system at temperature T, for an average concentration Xi of element B, 

which is within the spinodal decomposition region (see Fig. IV-7). 

 

 

 

 

 

 

 

  

 

 

 At a point in the solid solution, consider the emergence of a small fluctuation in 

composition, shifting from Xi to Xi′, which locally generates a composition gradient. This 

concentration gradient of element B is associated with a gradient in chemical potential, which 

induces a flow of matter B in the direction of decreasing chemical potential. 

 In Figure IV-7, the material with composition Xi has chemical potentials GA(Xi) and 

GB(Xi) for constituents A and B, respectively. The material with the average composition Xi′ 

has chemical potentials GA(Xi' ) and GB(Xi'). 

 In the domain of spinodal decomposition, a fluctuation in concentration from Xi to Xi′ (an 

increase in the concentration of B) leads to a decrease in the chemical potential of component 

B (and an increase in the chemical potential of component A). According to Gibbs' phase rule, 

the B constituents adjacent to the area of composition fluctuation will diffuse into this region, 

which is an unusual direction of increasing concentrations, while the A constituents will move 

away from it. This results in regions of the material that become increasingly enriched in B and 

others that become increasingly depleted in B (see Fig. IV-8 (a), Stage II). This self-propagating 

phenomenon leads to spinodal decomposition (see Fig. IV-8 (a), Stage III). 

Fig. IV-7: Variation of the chemical potential as a function of composition within the miscibility range. 
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 In the metastable range at temperature T, the decomposition mechanism differs from that 

of spinodal decomposition. A small fluctuation in composition (transition from Xm  to Xm + 

dXm) (see Fig. IV-7 and Fig. IV-8(b), Stage I) induces a change in chemical potential from 

GB(Xm) to GB( Xm'), with GB(Xm') > GB(Xm). Matter flow is then directed in the usual manner, 

towards decreasing concentrations (see Fig. IV-7 and Fig. IV-8(b), Stage II). Consequently, this 

composition fluctuation eventually diminishes (see Fig. IV-7 and Fig. IV-8(b), Stage III). 

 In the metastable domain, for a large fluctuation in composition, such as from Xm to Xm''

, where GB(Xm'') is lower than GB(Xm), the composition fluctuation will increase. This leads to 

the nucleation and growth of two solid solutions with compositions X1 and X4 (see Fig. IV-7 

and Fig. IV-8(c)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV-8. Limitations of Previous Theories 

 In the discussion of the preceding theories, several factors of significant importance were 

neglected. This limitation notably affects the validity of the quantitative conclusions that 
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Fig. IV-8: (a) Progression of a small fluctuation within the Spinodal decomposition region, 

(b) Disappearance of a small fluctuation in the metastable phase, 

(c) Nucleation and growth of a large fluctuation in the metastable phase. 
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someone unfamiliar with the complexities of solid-state reaction kinetics might draw from the 

previous discussion. Therefore, it is particularly instructive to identify these simplifications and 

investigate how they may influence the mechanisms of transformations in each specific case. 

 It should be noted that the two approaches are only apparently contradictory. While the 

first approach emphasizes the critical role of interfacial energy, the second approach simplifies 

by neglecting it. However, it is possible to incorporate this energy into Spinodal theory by 

translating the Spinodal curve downward from its simplified form. The difference between 

these two curves, which can vary with temperature, represents the elastic deformation energy 

resulting from the parameter differences between enriched and depleted regions. 

 It should be noted that while classical theory introduces the concept of interfacial energy 

from the outset, it neglects the fact that this energy can vary significantly for the same pair of 

associated phases due to several factors, including: 

 The morphology of the dispersed phase within the original matrix, 

 The orientation relationship between the two adjacent crystal lattices, 

 Constraints resulting from volume changes during processing. 
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Practice exercises 

Exercise 1: 

 Consider the nucleation of a new phase β in the form of a sphere with radius rrr within an 

infinite matrix of another phase α. If nucleation occurs at grain boundaries, as shown in Figure 

1, 

- What is the type of Nucleation in this case? 

- Provide the equation for calculating the free enthalpy of nucleation in this case, assuming 

that the interfacial energy (γ) of the α phase is isotropic and equal to that of the β phase. 

- Calculate the critical radius value r*. 

- Calculate the wettability angle of the β phase particle on the grain boundary (θ) if γα/β= 

500 and γα/α= 600 mJ/m2 

- Evaluate the f(θ) factor for this germ. 

  

 

 

 

Fig. IV-9- 

Exercise 2: 

 The isothermal transformation diagram in Fig. 2 pertains to a eutectoid steel, with phases 

labeled as A (austenite), B (bainite), P (pearlite), and M (martensite). 

- Determine the final microstructure of a small sample subjected to the following time-

temperature treatments. In each case, the initial temperature of the sample was 845°C 

and was held long enough for the sample to achieve a complete and homogeneous 

austenitic structure. 

 

(a) Rapid cooling to 350°C, holding at this temperature for 104 seconds, then rapid cooling 

to room temperature. 

(b) Rapid cooling to 250°C, holding at this temperature for 100 seconds, then rapid cooling 

to room temperature. 
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(c)  Rapid cooling to 650°C, holding at this temperature for 20 seconds, then rapid cooling 

to 400°C, holding at this temperature for 103 seconds, followed by rapid cooling to 

room temperature. 

 

 

 

  

 

 

 

 

 

 

 

 Fig. IV-10- 

Exercise 3: 

 Solid-state phase transformation kinetics that proceed by a nucleation mechanism 

generally follow a transformation law proposed by Avrami. The Avrami treatment provides an 

equation that allows the calculation of the degree of phase transformation as a function of time. 

1. If f1 and f2 are the fractions recrystallized at a given temperature at times t1 and t2, 

respectively, derive a relation for nnn in the Avrami equation. 

2. For copper, the fraction recrystallized at 135°C is given in the following table: 

 

  

 

- Determine n and K in the Avrami equation 
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Answers  

Answers for Exercise 1 

- heterogeneous nucleation 

- ∆Ghete = -V(∆Gv - ∆Gs) + Aγ-∆Gd 

In this exercise there are two spherical caps:  

 

 

 

 

 

∆Ghete = -2V(∆Gv - ∆Gs) + 2Aγαβ-Aααγαα 

γαα = 2cosθγαβ 

∆Ghete = (-V(∆Gv - ∆Gs) + 2Aγαβ)(
2−3𝑐𝑜𝑠𝜃+cos 𝜃3

2
) 

∆Ghete = ∆Ghomg (
2−3𝑐𝑜𝑠𝜃+cos 𝜃

3

2
) 

f(θ) = (
2−3𝑐𝑜𝑠𝜃+cos 𝜃

3

2
) 

𝑟∗ = 
2𝛾𝛼𝛽

(∆𝐺𝑣 − ∆𝐺𝑠)
 

∆𝐺ℎ𝑒𝑡𝑒
∗

∆𝐺ℎ𝑜𝑚𝑔
∗ = 𝑓(𝜃) 

The grain boundary ability of decreased ∆𝐺ℎ𝑒𝑡𝑒
∗  depends on the angle θ ↔

𝛾𝛼𝛼

2𝛾𝛼𝛽
 

Si 𝛾𝛼𝛽=500 mJ/m2 et  𝛾𝛼𝛼 = 600 mJ/m2 

The wettability angle θ\thetaθ is : θ = 33,56° 

f(θ) = 0.208 
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Answers for Exercise 2 

The temperature change curves versus time for the three treatments are shown in Fig. IV-11- 

 

 

 

 

 

 

 

 

 

 

Fig. IV-11- 

a) At 350°C, the transformation of austenite into bainite is isothermal. It begins after about ten 

seconds and ends approximately 500 seconds later. Therefore, after the 104 seconds 

specified in the problem, the sample contains only bainite. This means that no further 

transformation is possible, even if the subsequent rapid cooling curve crosses into the region 

of the diagram corresponding to martensite. 

b) At 250°C, the transformation to bainite begins after approximately 150 seconds. This means 

that after 100 seconds, the sample still contains only austenite. Once cooling lowers the 

sample temperature to about 215°C or below, the instantaneous transformation of austenite 

to martensite begins and progresses. As a result, when the sample reaches room temperature, 

the final microstructure consists solely of martensite. 

c) In the case of the isothermal curve at 650°C, pearlite formation begins after approximately 

7 seconds. After 20 seconds, about 50% of the austenite initially present in the sample has 

transformed into pearlite. The vertical line represents the rapid cooling to 400°C, during 

which the amount of austenite transforming into pearlite or bainite is very small or even zero, 
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despite the cooling curve passing through the regions of the diagram corresponding to 

pearlite and bainite. At 400°C, the elapsed time measurement is reset to zero. After 10 

seconds, the austenite that was still present in the sample (about 50%) has completely 

transformed into bainite. Since no austenite remains in the sample, any further 

transformation is impossible during the rapid cooling to room temperature. The final 

microstructure thus consists of pearlite and bainite in equal proportions, with 50% of each. 

 

Answers for Exercise 3 

1. 𝑓 = 1 − 𝑒−(𝐾𝑡)
𝑛
 

𝑛𝑙𝑛 (
𝑡2
𝑡1
) = 𝑙𝑛 (

𝑙𝑛(1 − 𝑓2)

𝑙𝑛(1 − 𝑓1)
) 

 

𝑛 =
𝑛 (

𝑙𝑛(1 − 𝑓2)
𝑙𝑛(1 − 𝑓1)

)

𝑙𝑛 (
𝑡2
𝑡1
)

 

2. Determination of n and K: 

𝑙𝑛𝑙𝑛 (
1

(1 − 𝑓)
) = 𝑛𝑙𝑛𝑡 + 𝑙𝑛𝐾 

Solving gives n=3.22 

K= 1.11x10-9.s-3.22 

 

 

 

 

 

 

 

 

  


