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V-1. Introduction  

During a first-order phase transformation, a heterogeneous state appears, even though the 

initial and final states are single-phase. After the formation of the new phase nucleus, the 

transformation is manifested by the movement of the interface boundary between the two 

phases. The energy level of the interface boundary and its properties are determined by the 

atomic structure of the boundary (including the degree of disorder) and the difference in 

chemical composition between the adjacent phases. It is evident that the greater the difference 

in the atomic structure of the phases (including differences in interatomic distances and 

coordination) and the nature of the atoms, the higher the interface energy will be. 

V-2. Total coherent, semi-coherent, and incoherent 

In crystals, different phases can be distinguished by the crystallographic directions along 

which interatomic directions are coincident. Examples of complete coincidence (in all three 

directions) in the arrangement of atoms include the formation of ordered domains or when a 

phase arises from a solid solution, which is isomorphic to the matrix but differs in composition. 

In such cases, we can speak of total coherence between the lattice of the new phase and the old 

phase (see Figure V-1-a). 

Differences in specific volumes (atomic radii and interatomic distances) lead to elastic 

deformation. Lattice mismatch (ε) during the growth of the new phase crystal can result in the 

formation of dislocations, which reduce this elastic deformation (see Figure V-1-b). 

                                                      휀 =
(𝑎𝑝−𝑎𝑀)

𝑎𝑀
                                            (V-1-) 

ap: is the lattice parameter of the precipitated phase 

aM: is the lattice parameter of the matrix 

 

The formation of a coherent interface is influenced by the energy gain, which depends on 

the degree of lattice mismatch between adjacent phases (see Fig. V-1-a). In most phases, each 

atom has an optimal arrangement of nearest neighbors that results in low energy. However, at 

the interface, there is typically a change in composition, causing each atom to interact with 

incorrect neighbors across the interface. This mismatch increases the energy of the interface 

atoms and contributes to the overall interface energy, denoted as γch. For a coherent interface, 

this is the primary contribution, i.e.: 
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                                                   γ(coherent) = γch                                                                  (V-2-) 

In general, coherent interfacial energies can be up to about 200 mJ/m². When the atomic 

spacing at the interface is not identical, coherence can still be maintained by applying stress to 

one or both lattices, as illustrated in Fig. V-1-(a). The resulting lattice distortions are referred 

to as coherency strains. 

 The strains associated with a coherent interface increase the total energy of the system. 

When the atomic mismatch or interfacial area becomes sufficiently large, it becomes 

energetically more favorable to replace the coherent interface with a semi-coherent interface, 

as shown in Fig. V-1-(b).  
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Fig. V-1-: Interfaces: (a) coherent (with a slight offset leading to coherence constraints in 

adjacent lattices), (b) semi-coherent, (c) incoherent 
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If dα and dβ are the unconstrained interplanar spacings of the corresponding planes in the 

α and β phases, respectively (see Fig. V-2), the misfit between the two lattices is defined by: 

                                               𝛿 =
𝑑𝛽−𝑑𝛼

𝑑𝛼
                                                (V-3-) 

It can be shown that, in one dimension, the lattice misfit can be fully compensated without 

generating a long-range strain field by introducing a set of edge dislocations with a distance 

DDD between them, given by: 

                                                𝐷 =
𝑑𝛽

𝛿
                                                 (V-4-) 

 

 

 

 

 

 

 

 

 

 

For small d, 

                                                          𝐷 ≅
𝑏

𝛿
                                                    (V-5-) 

 

Where b is the dislocation Burgers vector:  

                                                       𝑏 =
(𝑑𝛼+𝑑𝛽)

2
                                              (V-6-) 

The interfacial energy of a semi-coherent interface can be approximately viewed as the 

sum of two components: (a) a chemical contribution, γch, similar to that of a fully coherent 

Fig. V-2-: Semi-coherent interface: The misfit parallel to the interface is compensated by a 

series of edge dislocations. 
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interface, and (b) a structural term, γst, which represents the additional energy due to structural 

distortions caused by dislocations, i.e.: 

                             γ (semi-coherent) = γch + γst                                                           (V-7-) 

 Equation (V-4) shows that as the shift δ increases, the spacing between dislocations 

decreases. For small values of δ, the structural contribution to the interfacial energy is 

approximately proportional to the dislocation density at the interface, i.e., for small δ, γst∝δ.  

 As the spacing between dislocations decreases, the associated strain fields increasingly 

overlap and cancel each other out. The energies of semi-coherent interfaces generally range 

from 200 to 500 mJ/m². 

 The introduction of additional dislocations disrupts the partial coherence, resulting in a 

completely incoherent interface (see Fig. V-1-c). 

 In general, incoherent interfaces occur when two randomly oriented crystals are joined 

along any interface plane, as shown in Figure V-1-c. However, they can also arise between 

crystals with an orientation relationship if the interface structure differs between the two 

crystals. 

 As the particles reach a sufficiently large size, lattice coherence is lost. The decrease in 

elastic energy is associated with the formation of accommodation dislocations at the grain 

boundaries.  

 Complete relaxation of elastic stresses is achieved once a sufficient number of 

dislocations have formed, such that the distance between them is: 

                                                       𝑙 =
𝑏
                                          (V-8-) 

Where b is the Burger vector of the dislocations, 

The mechanisms for the formation of dislocations can vary between different particles: 

 Formation of prismatic loops around the particles within the matrix. 

 Creation of dislocation loops inside the precipitates through the condensation of point 

defects. 

 Generation of accommodation dislocations at the interface itself. 
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 Attraction of pre-existing dislocations from the matrix to the interface. 

V-3- Characteristics of the phases formed by precipitation 

The concepts of order, orientation relations, and coherence are crucial for describing the 

characteristics and properties of precipitates within a matrix. 

A phase is considered ordered if its constituent atoms are arranged according to the 

geometric pattern of the crystallographic structure, with each crystallographic site occupied by 

a specific type of atom. This is known as long-range order. If there are fluctuations or deviations 

in the chemical assignment, the compound exhibits only short-range order. In the extreme case 

where atoms are arranged randomly on the crystallographic lattice, the phase is termed 

disordered. 

Ordered precipitates typically consist of defined stoichiometric compounds with a 

restricted range of chemical compositions, which is characteristic of most equilibrium 

compounds. Metastable precipitates, which form during aging or tempering treatments, are 

often ordered. 

Another important characteristic of structural precipitation is the nearly systematic 

presence of preferential crystallographic orientation relations between the matrix and the 

precipitates. These relations arise either from homogeneous precipitation or from 

heterogeneous precipitation on dislocations, sub-grain boundaries, or specific grain boundaries 

or phases within the matrix. This is particularly evident in epitaxial relations, where there is a 

parallel alignment between the crystallographic planes or directions of the matrix and those of 

the precipitates. 

Finally, precipitates are considered coherent if there is geometric continuity between the 

crystallographic lattices of the matrix and the precipitates in all crystallographic directions. In 

this case, only the atomic arrangement within the lattice is altered (see Fig. V-3-a). 

In aluminum alloys, coherent precipitation is the initial stage of homogeneous 

precipitation, occurring either during or after the formation of GP (Guinier-Preston) zones. 

Coherent precipitates are typically very small, generally up to 5 nm in size, unless the deviation 

from coherence is minimal. For GP zones, this deviation is relatively small, ranging from 0.1% 

to 1%. 
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When the coherence misfit is too high, dislocations become geometrically necessary at 

the precipitate-matrix interfaces to accommodate the elastic distortions. This mechanism is 

observed in precipitates with a significant coherence misfit, which is common in heterogeneous 

precipitation induced by crystallographic defects and can also result from the excessive growth 

of initially coherent precipitates. In such cases, the orientation relationships are semi-coherent, 

meaning that the lattice of the matrix and the precipitates are coherent only along a few specific 

planes or crystallographic directions (see Fig. V-3-b). 

Finally, precipitates are considered incoherent if there is no specific crystallographic 

orientation relationship between the lattice of the matrix and that of the precipitate (see Fig. V-

3-c). This represents the final stage of precipitation, typically resulting in equilibrium phases. 

An example of an incoherent precipitate is the θ (CuAl₂) phase in Al-Cu alloys. Although there 

is an orientation relationship between the θ precipitate and the aluminum matrix, this is likely 

due to the fact that θ forms from the θ' phase, rather than indicating that θ is semi-coherent with 

the matrix. 

 Precipitation at grain boundaries 

Particular situations arise when a second-phase particle is located at a grain boundary, as 

it requires considering the formation of interfaces with two differently oriented grains. Three 

possibilities can then occur (see Fig. V-4): (1) the precipitate may have incoherent interfaces 

with both grains, (2) it may have a coherent or semi-coherent interface with one grain and an 

incoherent interface with the other, or (3) it may have a coherent or semi-coherent interface 

with both grains. The first two cases are commonly encountered, while the third possibility is 

less likely. 

The minimization of interfacial energy in these cases results in planar or slightly curved 

semi-coherent or coherent interfaces, and somewhat curved incoherent interfaces. An example 

of a grain boundary precipitate is shown in Fig. V-5. 
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Fig. V-3- : (a) Coherent precipitate with lattice distortion due to volume variation 

(b) Semi-coherent precipitate 

(c) Incoherent precipitate 

-a- 

-b- 

-c- 
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V-4- Misfit Strain effects 

When a misfit is present, the formation of coherent interfaces increases the free energy of 

the system due to the elastic strain fields that develop. If this elastic strain energy is denoted as 

ΔGs, the equilibrium condition is given by: 

                             ∑ 𝐴𝑖 𝛾𝑖 + ∆𝐺𝑠 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚                                       (V-9-) 

The origin of coherence constraints for a misfitting precipitate is illustrated in Fig. V-6. 

If the circled matrix volume in Figure V-6-(a) is sheared and the matrix atoms are replaced by 

Fig. V-4-: Possible morphologies for grain boundary precipitates include: 

 Incoherent interfaces: Slightly curved 

 Coherent or semi-coherent interfaces: Planar 

A 

B 
C 

Fig. V-5-: A precipitate at a grain boundary triple point in an α-β Cu-In alloy, where interfaces A and B 

are incoherent, while interface C is semi-coherent (×310) (After G.A. Chadwick, 

Metallography of Phase Transformations, Butterworths, London, 1972.) 
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smaller atoms, the sheared volume will experience a uniform negative expansion strain toward 

an inclusion with a smaller lattice parameter, as shown in Figure V-6-(b). To achieve a fully 

coherent precipitate, the matrix and the inclusion must be subjected to equal and opposite 

strains, as depicted in Fig. V-6-(c). 

 

 

 

 

 

 

 

If the lattice parameters of the unconstrained precipitate and the matrix are aβ and aα, 

respectively, the unconstrained misfit δ is defined by: 

                                                          𝛿 =
𝑎𝛽−𝑎𝛼

𝑎𝛼
                                            (V-10-) 

 However, the constraints that maintain coherency at the interfaces deform the lattice of 

the precipitate. For a spherical inclusion, this distortion is purely hydrostatic, meaning it is 

uniform in all directions, resulting in a new lattice parameter aβ′. The misfit with this constraint, 

denoted as ε, is defined by: 

                                                          휀 =
𝑎′𝛽−𝑎𝛼

𝑎𝛼
                                           (V-11-) 

 If the elastic moduli of the matrix and the inclusion are equal and the Poisson's ratio is 

1/3, then ε and δ: 

                                                         휀 =
2

3
𝛿                                        (V-12-) 

In practice, the inclusion typically has elastic constants different from those of the matrix; 

however, ε generally falls within the interval: 0.5 δ < ε < δ. 

Fig. V-6-: The origin of coherence constraints. 
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 When the precipitate is a thin disk, the in-situ misfit is not uniform in all directions. 

Instead, it is relatively large perpendicular to the disk and nearly zero within the plane of the 

broad faces, as shown in Figure V-7. 

 

 

 

 

 

 

 

 

In general, the total elastic energy depends on the shape and the elastic properties of both 

the matrix and the inclusion. However, if the matrix is elastically isotropic and the precipitate 

and matrix have equal elastic moduli, the total elastic strain energy ΔGs is independent of the 

precipitate's shape. Assuming a Poisson's ratio υ =1/3, it is given by: 

                                            ∆𝐺𝑠 ≅ 4𝜇𝛿2𝑉                                                  (V-13-) 

Where μ is the shear modulus of the matrix and V is the volume of the unstressed 

precipitate in the matrix. Therefore, the coherence strains generate an elastic strain energy that 

is proportional to the volume of the precipitate and increases with the square of the lattice misfit 

(δ2). 

When the inclusion is incoherent with the matrix, there is no effort to align the two 

lattices, and the lattice sites are not maintained across the interface. In such cases, there are no 

coherence constraints. However, misfit strains can still occur if the inclusion is not the correct 

size for the space it occupies (see Fig. V-8). In this scenario, the lattice shift δ\deltaδ is not 

significant, and it is more appropriate to consider the volume shift Δ, defined by: 

                                                 ∆=
∆𝑉

𝑉
                                                 (V-14-) 

 

 

Fig. V-7-: For a coherent thin disk, the misfit is minimal parallel to the plane of the disk, 

with the maximum misfit occurring perpendicular to the disk. 
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Nabarro provides the elastic strain energy for a homogeneous, incompressible inclusion 

in an isotropic matrix as: 

                                            ∆𝐺𝑠 =
2

3
𝜇∆2𝑉𝑓 (

𝑐

𝑎
)                                    (V-15-) 

  

Where μ is the shear modulus of the matrix. 

 Thus, the elastic strain energy is proportional to Δ2. The function f(c/a) accounts for shape 

effects and is illustrated in Fig. V-9. For a given volume, a sphere (c/a=1) has the highest strain 

energy, while a thin, flattened spheroid (c/a→0) has very low strain energy. A needle-like shape 

(c/a→∞) has strain energy between the two extremes. Therefore, the equilibrium shape of an 

incoherent inclusion will be an oblate spheroid with a c/a value that balances the competing 

effects of interfacial energy and strain energy. When Δ is small, the effects of interfacial energy 

should dominate, leading the inclusion to be approximately spherical. 

 

 

 

 

 

 

 

 

  

Fig. V-8-: The origin of misfit strain for incoherent inclusion 

Fig. V-9- : The variation of f(c/a). (After F.R.N. Nabarro, Proceedings of the Royal Society A, 175 

(1940) 519.) 
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V-5- Loss of coherence 

Precipitates with coherent interfaces exhibit low interfacial energy, but they are 

associated with coherent strain energy in the presence of misfit. Conversely, if the same 

precipitate has non-coherent interfaces, it will exhibit higher interfacial energy. Now, consider 

which state yields the lowest total energy for a spherical precipitate with misfit δ and radius r. 

The free energy of a crystal containing a fully coherent spherical precipitate includes 

contributions from: 

 The coherence strain energy, described by the following equation, 

 The interfacial chemical energy γch. 

The sum of these two terms is given by: 

                          ∆𝐺𝑐𝑜ℎ = 4𝜇𝛿2 4

3
𝜋𝑟3 + 4𝜋𝑟2𝛾𝑐ℎ                                         (V-16-) 

If the same precipitate has incoherent or semi-coherent interfaces, there will be no 

mismatch energy, but there will be an additional structural contribution to the interfacial energy 

γst. The total energy in this case is given by: 

                               ∆𝐺𝑛𝑜𝑛−𝑐𝑜ℎ = 0 + 4𝜋𝑟2(𝛾𝑐ℎ + 𝛾𝑠𝑡)                                                   (V-17-) 

For a given δ, ΔG (coherent) and ΔG (non-coherent)  vary with r as shown in Fig. V-10. When 

small, the coherent state provides the lowest total energy, while for large precipitates, it is more 

favorable for them to be semi-coherent or incoherent (depending on the magnitude of δ). At the 

critical radius (rcrit); ΔG (coherent) = ΔG (non-coherent), giving: 

                                           𝑟𝑐𝑟𝑖𝑡 =
3𝛾𝑠𝑡

4𝜋𝛿2
                                           (V-18-) 
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 Characteristics of the phases formed during precipitation and their 

modulated structure 

These structures are formed, for example, during the demixing of solid solutions. In 

binary alloys such as Ni-Al, Ni-Ti, Ni-Au, and ternary alloys like Cu-Ni-Fe and Fe-Ni-Al, two 

new isomorphic phases with different compositions are formed. The dependence of the lattice 

parameter on the concentration follows Vegard's law: 

                                                𝑎 = 𝑎0(1 + 𝑞0𝐶)                                         (V-19-) 

 

Where:  

a0 is the lattice parameter of one of the constituents. 

q0 is the expansion coefficient of the lattice. 

C is the concentration of the 2nd component.  

 

 Differences in composition and thus in lattice parameters inevitably lead to the imposition 

of constraints. It can be demonstrated that, in terms of elastic energy, the formation of 

complexes consisting of alternating lamellae—enriched and depleted in one of the elements—

is more favorable than the formation of separate phases in the form of independent discs. 

 

∆G 

0 

Non-coherent 

precipitate Coherent 

precipitate 

rcrit r 

Fig. V-10-: Total energy of the matrix plus precipitate as a function of the radius of the precipitate, for 

both coherent and non-coherent spherical precipitates (semi-coherent or incoherent). 
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Practice exercises 

Exercise 1: 

Mg can dissolve in Al to form a substitutional solid solution. However, Mg atoms are 

larger than Al atoms, and therefore each Mg atom distorts the surrounding Al lattice, creating 

a stress field that effectively exists around each Mg atom. 

 Show the strain energy in kJ mol−1 and eV atom−1. 

 What hypotheses are implicit in this calculation? 

We give: The shear modulus of μAl = 25GPa, rAl = 1,43 Å, rMg = 1,60 Å. 

Exercise 2: 

 Figure -1- shows the various phases, both stable and metastable, present in the Al-4 at.% 

Cu alloy. These phases are presented in the figure, not necessarily in the chronological order of 

their formation. 

 Characterize the interfaces for each phase and indicate which phases are expected to 

germinate most easily. Deduce the hardening precipitation sequence in Al-Cu alloys. 

 

 

 

 

 

 

 

 

 

 

Figure 1 

 

Al atom  Cu  atom  
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Exercise 3: 

1. A coherent interface between a precipitate and a matrix is characterized by an interfacial 

energy γch. 

- What precipitate shape minimizes this surface contribution? 

2. In reality, the lattice parameters of precipitates are not perfectly equal to the lattice 

parameter of the matrix, resulting in semi-coherent interfaces. 

- What is the free energy associated with the presence of a spherical precipitate? 

3. If the same precipitate has an incoherent (or semi-coherent) interface, 

- What occurs? 

- What is the free energy associated with the presence of this precipitate in this case? 

4. For a given misfit δ, illustrate the variation of ΔGcoh and ΔGincoh. 

- What do you observe? 

Answers  

Answers for Exercise 1 

∆𝐺𝑠 ≅ 4𝜇𝛿2𝑉 

δ=0.119 

V=1.225x10-29 m3 

μAl = 25 GPa=25x109 Nm-2 

∆Gs = 10.5 kj.mol-1 = 0.1 eV.atom-1 

It is also implicitly assumed that individual Mg atoms are sufficiently spaced apart so that each 

atom can be considered isolated, i.e., in a dilute solution. The use of Equation 3.39 also relies 

on the assumption that the matrix surrounding a single atom behaves as a continuum. 

Answers for Exercise 2 

 GP zones are coherent with the matrix (fig. -3-c-). 

 θ’ precipitates are semi-coherent with the matrix (fig. -3-b-). 

 θ precipitates are incoherent with the matrix (fig. -3-d-). 

 

- The precipitation sequence: 

α→α1+GP→α2+θ"→α3+θ'→α4+θ 
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Answers for Exercise 3 

1- The shape that minimizes this surface contribution is a sphere. 

2- Elastic deformation is necessary to accommodate the atoms at the interface, resulting in 

additional energy due to this deformation. 

The free energy associated with the presence of a coherent spherical precipitate consists of 

two contributions: 

- the deformation energy: ΔGst = 4/3πr3 *4µδ2 

- the interface energy: ΔGch = 4πr2γch 

 

ΔGcoh = 4/3πr3 *4µδ2 + 4πr2γch 

In this case, the precipitate is much less deformed, making its deformation energy 

negligible. However, a second term, γst, is added to the interface energy, which then becomes: 

ΔGch = 4πr2(γch + γst) 

hus, the total free energy for an incoherent precipitate is: ΔGincoh = 4πr2(γch + γst) 

3-  

 

 

 

 

 

 

It is observed that a small precipitate is more favorably coherent, while a larger precipitate tends 

to be incoherent. 


