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I DYNAMIQUE DES FLUIDES
PARFAITS INCOMPRESSIBLES

1. Introduction

Le chapitre précédent a examiné les lois des comportements des fluides au repos. Dans ce
chapitre, nous allons aborder la dynamique des fluides parfaits incompressibles (non-
visqueux). La dynamique des fluides est étudie les fluides en mouvement avec les forces qui
provoquent l’écoulement. Lorsqu’un fluide est parfait (viscosité négligeable) incompressible,
les forces dues à la viscosité et à la compressibilité, sont nulles. Donc il n’y a pas de
mouvement relatif entre les particules de fluide ainsi qu’aucune transformation de l’énergie.
Le comportement dynamique de fluide est analysé par la seconde loi du mouvement de
Newton, qui relie l'accélération avec les forces.

2. Écoulement permanent

Un l’écoulement d’un fluide est dit permanent (ou stationnaire) lorsqu’en un point
quelconque dans le fluide, tous les paramètres caractéristiques du fluide tel que la vitesse,
la pression, la masse volumique, l’accélération, température, etc. sont indépendants du
temps. Mathématiquement, nous avons  :Un l’écoulement d’un fluide est dit permanent
(ou stationnaire) lorsqu’en un point quelconque dans le fluide, tous les paramètres
caractéristiques du fluide tel que la vitesse, la pression, la masse volumique, l’accélération,
température, etc. sont indépendants du temps. Mathématiquement, nous avons :

∂ →U
∂t = ∂P

∂t = ∂ρ
∂t = ∂T

∂t = 0

Dans le cas contraire, où les paramètres dépendent du temps, l’écoulement d’un fluide est
dit non-permanent ou instationnaire. Mathématiquement, nous avons :

∂ →U
∂t ≠ ∂P

∂t ≠
∂ρ
∂t ≠ ∂T

∂t ≠ 0

3. Équation de continuité (Conservation de masse)

 Conseil :

Considérons un fluide de masse volumique ρ s’écoule à travers une conduite. Deux
sections 1-1 et 2-2 d’une conduite. Soit U1, A1, ρ1 représentes la vitesse, l’aire et la masse
volumique à la section 1-1 respectivement. Ainsi, U2, A2, ρ2 sont des valeurs correspondant à
la section 2-2 comme montre la figure III-1.
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Image 1 Figure III. 1. Fluide circulant dans une conduite

L’équation de continuité est basée sur le principe de conservation de la matière pour un
régime d’écoulement permanent, la masse du fluide entrant dans la section 1-1 par unité
de temps est égale la masse de fluide sortant de la section 2-2 par unité de temps. On
peut calculer cette quantité de fluide par la relation suivante :

ρ1.A1.U1

Q1

= ρ2.A2.U2

Q2

Formule 1

L’équation (III-1) s’appelle l’équation de continuité ou l’équation de conservation de masse.
Cette équation s’applique aux fluides compressibles et incompressibles. Si le fluide est
incompressible, la masse volumique est constante (ρ1 = ρ2), l’équation (III-1) de continuité,
devient :

A1.U1

Q1

= A2.U2

Q2

Formule 2

4. Débit volumique et débit massique

 Définition :

Le débit d’un fluide est défini comme la quantité d'un fluide circulant par unité de temps
(seconde) à travers une section d'une conduite ou d'un canal. On distingue deux cas selon
les types de fluide incompressible ou compressible.

Dans le premier cas, le débit est exprimé en volume de fluide qui traverse la section par
unité de temps, est appelé le débit volumique. Dans ce cas, le débit volumique est
conservé (constant) dans toutes les sections droites, on aura donc :

Qv = A.U

Formule 3

Où :

Qv : le débit volumique en m3/s ou l/s, 1m3 = 1000 litre,

A : la section de la conduite ou le canal en m,

U : la vitesse moyenne de fluide en m/s.

 

 

DYNAMIQUE DES FLUIDES PARFAITS INCOMPRESSIBLES
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Par contre, le deuxième cas, le débit est généralement exprimé en masse de fluide qui
traverse la section par unité de temps, est appelé le débit massique. Dans ce cas, le débit
massique est conservé (constant) dans toutes les sections droites, on aura donc :

Qm = ρ.A.U = ρ.Qv

Formule 4

Où :

Qm : le débit massique en kg/s ou N/s,

ρ : la masse volumique d’un fluide en kg/m3.

5. Équations de mouvement

 Fondamental :

Selon la deuxième loi de Newton ou le principe fondamental de la dynamique (PFD), la
force résultante agissant sur un élément fluide est égale à la masse de l'élément fluide
multipliée par l'accélération. La deuxième loi de Newton, appelée aussi l’équation de
mouvement est définie par la relation suivante :

∑F = ma

Formule 5

Où :

F : la force résultante agissant sur l’élément fluide en N,

m : la masse de l’élément fluide en kg,

a : l’accélération de l’élément fluide en m/s2.

Dans l’écoulement d’un fluide réel, les forces agissant sur un élément fluide sont :

1. la force de gravité, Fg (force de volume ou de poids),

2. la force de pression, FP, (force de surfaces),

3. la force due à la viscosité, Fv (fluide réel ou visqueux),

4. la force due à la turbulence, Ft,

5. la force due à la compressibilité, Fc (fluide compressible, ou gaz).

 Complément :

En remplaçant les forces précédentes dans l'équation (III-5), on obtient :

∑F = Fg + FP + FV + Ft + Fc = ma

Formule 6

 Remarque :

Remarques :

1. Si le fluide est incompressible la force due à la compressibilité, Fc est négligeable,
l'équation des mouvements obtenus s’appelle l’équation du mouvement de
Reynolds1.

1. file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%203.docx#_ftn1
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2. D’autre part, lorsque la force due à la turbulence, Ft est négligeable, l'équation des
mouvements obtenus s’appelle l’équation de Navier2-Stokes.

3. Par contre, si la force due à la viscosité, Fv, est nulle, le fluide est parfait, les équations
des mouvements obtenus sont connues par l’équation de mouvement d'Euler.

6. Équation du mouvement d’Euler

Considérons un fluide parfait qui s’écoule en régime permanent à travers une conduite. Un
petit élément fluide sous forme d’un cylindre se déplaçant le long d’une ligne de courant.
La ligne de courant est inclinée d’un angle θ quelconque par rapport à l’axe X comme
présenté la figure III.2. L’élément fluide est de longueur ds et de section dA dans un plan
orthonormé3 OXZ. Ainsi, cet élément peut subir une accélération ou une décélération en
raison des forces agissant sur l’élément. Dans ce cas, le fluide est parfait et le régime est
permanent, l’élément fluide soumis que les forces de pression et de poids (volume)
seulement.

Image 2 Figure III. 2. Les forces agissant sur un élément fluide [ (4)]

 Méthode :

En appliquant la deuxième loi de Newton sur l’élément fluide dans la direction, s, on aura
donc :

∑Fs = m.as

Formule 7

Où :

Fs : la force résultante sur l’élément fluide dans la direction du, s.

m : la masse de l’élément fluide,

as : l’accélération dans la direction du s.

2. file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%203.docx#_ftn2
3. file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%203.docx#_ftn1
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 Complément :

Les forces agissant sur l’élément fluide sont :

1. Force de pression de fluide P.dA dans le sens de l’écoulement,

2. Force de pression de fluide (P + dP).dA opposée à la direction de l’écoulement,

3. Poids de l’élément de fluide G = mg = ρ.g.dA.ds.

P .dA − (P + dP)dA − G. sin(θ) = m.as

Formule 8

Où :

as = dU
dt

Où la vitesse U est une fonction de s et t, en prenant la différentielle totale de U(s, t), on
obtient :

dU = ∂U
∂s .ds + ∂U

∂t . dt

En divisant chaque terme de l’équation précédente par dt, on obtient :
dU
dt

= ∂U
∂s . ds

dt
+ ∂U

∂t

L’écoulement est en régime permanent (∂U/∂t = 0), on obtient :

as = dU
dt

= ∂U
∂s .U = U . dU

ds

En remplaçant les valeurs de as, G et m dans l’équation (III-8), on trouve :

P .dA − (P + dP).dA − ρ.g. dA . ds . sin(θ) = ρ. dA . ds .U . dU
ds

Formule 9

Ainsi, en remplaçant dans l’équation (III-9) sinθ par dz/ds et en simplifiant l’équation, on
obtient :

− dP .dA − ρ.g. dA . ds . dz
ds

= ρ. dA . ds .U . dU
ds

Formule 10

En divisant tous les termes de l’équation (III-10) par le produit ρ.dA et de simplifier :
dP
ρ + g.dz + U .dU = 0

Formule 11

L’équation (III-11) est appelée l’équation de mouvement d’Euler ou équation générale de la
dynamique des fluides parfaits.

On peut écrire l’équation (III-11) sous forme vectorielle :

ρ.→g − →grad(dP) = ρ. dUdt

7. Équation de Bernoulli

L’équation de Bernoulli sur une ligne de courant est obtenue en intégrant l’équation de
mouvement d’Euler (Voir l’équation III-11) comme suit :

∫ dP
ρ

+ ∫ g.dz + ∫ U .dU = E

Formule 12

Où :

E : constant (le long d’une ligne de courant),

DYNAMIQUE DES FLUIDES PARFAITS INCOMPRESSIBLES
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 Conseil :

Dans le cas du fluide incompressible, (la masse volumique ρ est constante) l’équation de
Bernoulli devient :
P
ρ

+ g.z + U 2

2 = E

On peut diviser tous les termes de l’équation précédente sur l’accélération pesanteur g, on
trouve :

P
ρ.g + U 2

2.g + z = Cte

Formule 13

P/ρg  : la hauteur liée à la pression ou l’énergie de pression par unité de poids de fluide
(charge de pression) en m ou J/N,

U2/2g : la hauteur liée à la vitesse ou pression cinétique ou l’énergie cinétique par unité de
poids de fluide (charge dynamique) en m ou J/N,

z : la hauteur de position ou l’énergie de position par unité de poids de fluide,

((P/ρg) + z) : la hauteur piézométrique ou l’énergie potentielle par unité de poids de fluide
(charge piézométrique) en m ou J/N,

H : la hauteur hydrodynamique ou l’énergie mécanique totale par unité de poids du fluide
(charge totale) en m ou J/N.

 Remarque :

Dans les fluides parfaits, il n’a y pas de dissipation d’énergie, l’équation (III-13) montre que
l’énergie mécanique totale par unité de poids d’un élément fluide reste constante tout au
long d’une même ligne de courant. Ainsi, cette équation permet de calculer la pression, la
vitesse et la hauteur sur un linge de courant d’un fluide parfait incompressible en régime
permanent.

 Conseil :

On peut appliquer l’équation de Bernoulli, entre deux points d’une même ligne de courant
pour un régime d’écoulement permanent d’un fluide parfait incompressible sans ou avec
échanger de travail.

7.1. Cas d’un écoulement sans échange de travail

Considérons un fluide parfait se déplaçant en régime permanent dans le sens (1) vers (2)
comme indiquer sur la figure III.3. Un élément fluide se trouvant initialement à la position
z1 qui s’écoule le long de la ligne de courant à la position z2 sans échange de travail. C’est-
à-dire, il n’y a aucune machine hydraulique (ni pompe hydraulique ni turbine hydraulique)
entre les deux points (1) et (2). En appliquant l’équation de Bernoulli (équation III-11) d’une
même ligne de courant entre les deux points (1) et (2). Ainsi, l’énergie mécanique totale par
unité de poids du fluide, H est conservée, on a donc :

P1

ρ.g +
U 2

1

2.g + z1 = H1 = P2

ρ.g +
U 2

2

2.g + z2 = H2 = H

DYNAMIQUE DES FLUIDES PARFAITS INCOMPRESSIBLES
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Image 3 Figure III. 3. Application de l’équation de Bernoulli sans échange de travail [ (7)]

L’équation de Bernoulli pour les fluides parfaits en régime permanent d’une ligne de
courant (1) et (2) entre deux points, sans échange de travail est donnée comme suite :

P1

ρ.g +
U 2

1

2.g + z1 = P2

ρ.g +
U 2

2

2.g + z2

Formule 14

7.2. Cas d’un écoulement avec échange de travail

Dans ce cas, nous prenons les mêmes hypothèses et les mêmes notations utilisées dans le
cas précédent mais avec échange de travail. En outre, on suppose qu’une machine
hydraulique est placée entre les deux points (1) et (2) comme le montre sur la figure III.4.

Image 4 Figure III. 4. Application de l’équation de Bernoulli avec échange de travail [ (7)]

 Complément :

Généralement, les caractéristiques d’une machine hydraulique sont la puissance délivrée
par la machine au fluide, la puissance délivrée à la machine (qu’il faut fournie) et le
rendement de la machine. Cette machine peut être une turbine hydraulique ou une
pompe hydraulique.

DYNAMIQUE DES FLUIDES PARFAITS INCOMPRESSIBLES
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 Remarque :

Si la machine est une pompe hydraulique (gain d’énergie) :

La puissance de la pompe hydraulique échangée avec le fluide est donnée par la relation
suivante :

Ẇp = ρ.g.Qv.hp

Formule 15

Où :

Ẇp : la puissance nette délivrée par la pompe hydraulique au fluide (reçue) en W,

hP : la charge délivrée ou l’énergie par unité de poids fournie par la pompe hydraulique en
m ou J/N,

 Complément :

D’autre part, le rendement d’une pompe hydraulique est donné par la relation suivante :

ηp =
Ẇp

Ẇ 'p

Formule 16

Où :

Ẇ 'p : la puissance délivrée à la pompe hydraulique en W.

 Remarque :

Si la machine est une turbine hydraulique (perte d’énergie) :

La puissance de turbine hydraulique échangée avec le fluide est donnée par la relation
suivante :

ẆT = ρ.g.Qv.hT

Formule 17

Où :

ẆT  : la puissance nette consommée par la turbine hydraulique en W,

hT  : la charge consommée ou l’énergie par unité de poids consommée par la turbine
hydraulique en m ou J/N.

 Complément :

D’autre part, le rendement de la turbine hydraulique est donné par la relation suivante :

ηT = ẆT

Ẇ 'T

Où :

Ẇ 'T  : la puissance délivrée par la turbine hydraulique en W.

 Conseil :

L’unité de la puissance dans le système internationale (SI) est le Watt, noté W défini
comme un Joule4 par seconde J/s. Il existe aussi d’autres d’unités de puissance comme le
Cheval-Vapeur (Ch).

4. file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%203.docx#_ftn2
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1 W = 1 J/s = N.m/s,

1 Ch = 735.39875 W ≈ 736 W.

L’équation de Bernoulli pour les fluides parfaits en régime permanent entre deux points
d’une ligne de courant (1) et (2) avec échange de travail est donnée par la relation suivante :

P1

ρ.g +
U 2

1

2.g + z1 + hp = P2

ρ.g +
U 2

2

2.g + z2 + hT

Formule 18

8. Applications aux mesures des débits et des vitesses

L’équation de Bernoulli est appliquée dans tous les problèmes d’écoulement permanent
de fluide parfait incompressible. Dans ce cours, nous appliquons cette équation à certains
ces tels que : Venturi-mètre, Vidange d’un réservoir, Diaphragme (plaque à orifice) et Tube
de Pitot.

8.1. Cas d’un Venturi-mètre

Un venturi5-mètre est un appareil utilisé pour mesurer le débit d’un fluide circulant dans
une conduite circulaire (ou tuyau). Il est basé sur le principe de l’équation de Bernoulli et se
compose de trois parties essentielles :

1. Une partie courte convergente,

2. Un col (ou gorge),

3. Une partie divergente.

 Méthode :

Considérons un venturi-mètre placé dans une conduite circulaire (ou tube) horizontale
dans laquelle s’écoule un fluide supposé parfait et incompressible (par exemple l'eau),
comme indiqué sur la figure III.5. Le fluide s’écoule à travers la section A1 à une vitesse U1
avant d’atteindre la partie convergente où la section A2 < A1 impliquer une vitesse U2 > U1.
D’après l’équation de continuité, le débit volumique Qv est conservé entre les deux
sections (1) et (2), on obtient :

Image 5 Figure III. 5. Un Venturi-mètre

Qv = Qv1 = Qv2

Qv = A1.U1 = A2.U2

5. file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%203.docx#_ftn1
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On peut ensuite appliquer l'équation de Bernoulli entre les deux points d’une même ligne
de courant (1) et (2), on trouve :

P1

ρ.g +
U 2

1

2.g + z1 = P2

ρ.g +
U 2

2

2.g + z2

Comme la conduite est horizontale, on a z1 = z2.

P1

ρ.g +
U 2

1

2.g = P2

ρ.g +
U 2

2

2.g ⇒ P1 − P2 = ρ.
U 2

2 −U 2
1

2

Par conséquent, la variation de pression entre les deux points est P1 – P2 = ρgh, en
remplaçant cette valeur dans l’équation précédente, on obtient :

ρ.g.h = ρ.
U 2

2 −U 2
1

2 ⇒ 2.g.h = U 2
2 − U 2

1

On peut alors introduire le débit volumique aux points (1) et (2) est Qv = A1U1 = A2U2, pour
exprimer :

⇒ U 2
2 − U 2

1 = Q2
v(

1
A2

1

− 1
A2

2

) = 2.g.h

Enfin, le débit volumique qui traverse la conduite est donné par la relation suivante :

Qv = √ 2.g.h

(1/A2
2)−(1/A2

1)

Formule 19

 Attention :

En réalité, le débit volumique réel mesuré, Qr, sera inférieur à ce résultat théorique en
raison des différences entre le monde réel et les hypothèses utilisées. En peu écrire le débit
volumique réel, Qr, par la relation suivante [ (1)] :

Qr = Cd.Qv

Où :

Qr : le débit volumique réel en m3/s,

Cd : le coefficient de débit sa valeur est variée entre 0.61 et 0.65, en général la valeur de Cd
est 0.62.

 Méthode :

Par contre, les vitesses moyennes d’écoulement au niveau des points (1) et (2) :

U1 = Qv

A1
= √ 2.g.h

(A1/A2)2−1
et U2 = Qv

A2
= √ 2.g.h

1−(A2/A1)2

Formule 20

8.2. Cas de vidange d’un réservoir (loi de Torricelli)

Considérons un réservoir de section A1, rempli d'un fluide incompressible et parfait, qui
s'écoule en régime permanent à travers un orifice de section A0. Deux points (1) et (2) de
telles manières que le point (1) est situé au niveau de la surface libre de fluide et que le
point (2) est situé sur le jet de fluide à la sortie de l’orifice. Les deux points (1) et (2) sont
exposés à la pression atmosphérique (Voir la figure III.6).

U1 =
Qv

A1

U2 = Qv

A2

DYNAMIQUE DES FLUIDES PARFAITS INCOMPRESSIBLES
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Image 6 Figure III. 6. Vidange d’un réservoir

Pour déterminer la vitesse et le débit volumique, on peut appliquer l'équation de Bernoulli
entre les deux points d’une même ligne de courant, on obtient :

P1

ρ.g +
U 2

1

2.g + z1 = P2

ρ.g +
U 2

2

2.g + z2

La section de jet de fluide à la sortie de l’orifice A2, est très petite par rapport à celle de
réservoir A1 (A2 << A1). À cet effet, on peut négliger la vitesse de la surface libre U1 devant la
vitesse à la sortie de l’orifice U2 (U1 << U2). Par ailleurs, les deux points (1) et (2) sont exposés
à la pression atmosphérique donc P1 = P2 = Patm. En remplaçant ces valeurs (U1, P1 et P2)
dans l’équation précédente, l’équation de Bernoulli prend la forme suivante :

Après simplification, la vitesse de vidange d’un réservoir est présentée par l’équation
suivante :

U2 = √2.g.h

Formule 21

L’équation (III-21) montre que la vitesse de vidange est indépendante de la masse
volumique de fluide [ (2)]. Par contre, elle est en fonction seulement de la distance verticale
entre l’orifice et la surface libre du fluide. Cette équation est appelée la formule de Torricelli
en hydraulique. Ainsi, l’équation (III-21) montre la vitesse théorique de vidange, mais en
réalité la vitesse réelle sera inférieure à cette valeur. L’expression de la vitesse réelle est
présentée par la relation suivante :

Ur2 = Cv.U2 = Cv.√2.g.h

Où :

CV : le coefficient de vitesse sa valeur est variée entre 0.95 et 0.99.

Patm

ρ.g + 0 + z1 = Patm

ρ.g +
U 2

2

2.g + z2

U 2
2

2 = g(z1 − z2) = g.h
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8.3. Cas d’un diaphragme

 Définition :

Le diaphragme, c’est un appareil utilisé pour mesurer le débit du fluide à travers une
conduite. Il est fonctionné selon le même principe que celui du venturi-mètre. Il est
composé d’une plaque plane qui a un trou circulaire appelé orifice, qui est concentrique
avec la conduite de section A0. Un manomètre différentiel pour mesure la variation de
pression est placé entre les deux sections (1) et (2), comme monté la figure III.7.

Image 7 Figure III. 7. Diaphragme

Les expressions de débit volumique théorique et réel d’un diaphragme sont présentées
par la relation suivante [ (1)] :

Qv = √ 2.g.h.( ρm
ρ

−1)

(1/A2
2)−(1/A2

1)
;Qr = Cd.A0.A1 = √ 2.g.h.( ρm

ρ
−1)

(A2
1)−(A2

0)

Formule 22

Où :

Qr : le débit volumique réel,

A0 : la section de l’orifice,

A1 : la section de conduite,

ρm : la masse volumique de manomètre,

Cd : le coefficient de débit est très petit par rapport à venturi-mètre, il est défini comme le
coefficient de vitesse Cv fois le coefficient de contraction Cc : Cd = Cv.Cc.

Le coefficient de contraction est varié entre 0.61 et 0.69, en fonction de plusieurs
paramètres de l’orifice, généralement Cc = 0.64, il est défini par la relation suivante [ (8)] :

Cc = Ac

A

Où :

Ac : la surface de l’orifice,

A : la surface de jet de fluide à la sortie de l’orifice.
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15



8.4. Cas de tube de Pitot

Le tube de Pitot est un appareil utilisé pour mesurer la vitesse d’écoulement d’un fluide
dans une conduite ou un canal. Il est basé sur le principe que lorsque la vitesse de
l'écoulement à un point devient nulle, la pression est augmentée en raison de la
conversion de l'énergie cinétique en énergie de pression. Le tube de Pitot est largement
utilisé dans les avions pour mesurer la vitesse de l’air. Il existe plusieurs types de tube Pitot,
la forme la plus simple, est constitué d'un tube transparent sous forme de L.

 Méthode :

Considérons un fluide parfait, incompressible et en régime permanent dans une
canalisation et un tube de Pitot plongé dans le fluide. L’extrémité inférieure de tube est
orientée parallèlement dans le sens inverse à la direction de l’écoulement. Par contre,
l’autre extrémité de tube Pitot est exposée à la pression atmosphérique comme le montre
la figure III.8. Le fluide monte dans le tube à une certaine hauteur, h en raison de la
conversion de l'énergie cinétique en énergie de pression. La vitesse est déterminée en
mesurant la hauteur du fluide dans le tube.

Image 8 Figure III. 8. Le tube de Pitot dans un canal simple

Considérons deux points (1) et (2) au même niveau de telle manière que le point (2) est
situé au niveau de l’orifice de tube inférieur (point d’arrêt) et que le point (1) est situé loin
du tube.

L’application de l'équation de Bernoulli le long d’une même ligne de courant, entre (1) et
(2) donne :

P1

ρ.g +
U 2

1

2.g + z1 = P2

ρ.g +
U 2

2

2.g + z2

Les deux points (1) et (2) étant à la même hauteur, on a z1 = z2, et le fluide à l’intérieur de
tube est au repos, où la vitesse est nulle U2 = 0, on obtient :

P1

ρ.g +
U 2

1

2.g = P2

ρ.g +
U 2

2

2.g + z2

Ainsi, les pressions de deux points (1) et (2) sont :

P1 = Patm + ρ.g.H

P2 = Patm + ρ.g.(H + h)
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En remplaçant ces valeurs de P1 et P2, dans l’équation précédente, on obtient :

Patm+ρ.g.H
ρ.g +

U 2
1

2.g =
Patm+ρ.g.(H+h)

ρ.g ⇒ H +
U 2

1

2.g = H + h ⇒ U1 = √(2.g.h)

L’expression de la vitesse réelle dans d’un tube Pitot est présentée par la relation suivante :

Ur1 = Cv.U1 = Cv.√2.g.h

Formule 23

Où :

Cv : le coefficient de vitesse sa valeur est variée entre 0.95 et 0.99. Dans le cas, général Cv =
0.98.
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Mentions légales

Ce module est publié sous licence Creative Commons Attribution 4.0 International (CC BY
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