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I DYNAMIQUE DES FLUIDES
REELS INCOMPRESSIBLES

1. Introduction

Dans le chapitre précédent, nous avons traité la dynamique des fluides parfaits
incompressibles, sans prendre en considération 'effet de la viscosité et la compressibilité. Ce
chapitre comprend I'étude de la dynamique des fluides réels (visqueux) incompressibles.
Dans ce cas, les forces dues a la compressibilité sont nulles, mais les forces dues a la viscosité
d'un fluide sont considérées. Ces forces de frottement agissant entre les particules de fluide
et les parois, ainsi qu'entre les particules de fluide elles-mémes. La présence de ces forces
entraine une dissipation d'énergie, car d'une partie de |'énergie totale du fluide va se
transformer en énergie thermique due au frottement.

2. Type d’écoulements d'un fluide

L'écoulement d'un fluide est défini comme le mouvement des fluides. Dans la mécanique
des fluides, il existe plusieurs types d'écoulement tels que : Ecoulement permanent ou
non-permanent, Ecoulement laminaire ou turbulent, Ecoulement uniforme ou non-
uniforme, Ecoulement rotationnel ou irrotationnel, et Ecoulement uni, bi, ou
tridimensionnel.

2.1. Ecoulements uniforme ou non-uniforme

Dans un écoulement uniforme, toutes les caractéristiques et propriétés (vitesse, pression,
la masse volumique, ..) de I'écoulement ne varient pas d'un point a un autre sur une
section donnée. C'est-a-dire pas de déformation et pas de rotation d'écoulement. A titre
d'exemple, la vitesse, U, ne dépend pas de la position, s. Mathématiquement, nous avons :

oUu __
2 — 0

Ou:

oU : la variation de vitesse,

0s : la variation da distance dans la direction s.

Par contre, un écoulement non-uniforme toutes les caractéristiques et propriétés (vitesse,
pression, la masse volumique, ..) de I'écoulement changent d'un point a un autre sur une

section donnée. Par exemple, la vitesse, U, dépend de la position, s. Mathématiquement,
NOuUS avons :

L £0
2.2. Ecoulement rotationnel ou irrotationnel

Dans un écoulement rotationnel les particules de fluide s'écoulent le long des lignes de
courant et tournent autour de leur propre axe. Par exemple, la vitesse, U, dans un
écoulement rotationnel est donnée par la relation suivante:

RotU =0
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Par contre, un écoulement irrotationnel les particules de fluide s'écoulent le long des
linges de courant, sans rotation. L'écoulement d'un fluide parfait est toujours irrotationnel.
A titre d'exemple, la vitesse, U, dans un écoulement irrotationnel est donnée par la relation
suivante :

RotU # 0
2.3. Ecoulement uni, bi ou tridimensionnel
Lorsqu’un écoulement est unidimensionnel toutes les caractéristiques et propriétés

(vitesse, pression, la masse volumique, ...) de I'écoulement dépends du temps et une seule
direction. Par exemple, la vitesse U est en fonction du temps, t, et une seule variable x.

U, = f(z,t),U, = 0,U. = 0,

Par contre, si I'écoulement bidimensionnel toutes les caractéristiques et propriétés
(vitesse, pression, la masse volumique, ..) de l'écoulement dépends du temps et deux
directions. Par exemple, la vitesse U est en fonction du temps, t, et les deux variables x et y.

U: = fl(il?,y,t),Uy = fQ(ZE,y,t),UZ =0

D'autre part, dans 'écoulement tridimensionnel, toutes les caractéristiques et propriétés
(vitesse, pression, la masse volumique, ..) de I'écoulement dépends du temps, et trois
directions (dans I'espace). Par exemple, la vitesse U est en fonction du temps t, et les trois
variables x, y et z.

UCD — fl (:c,y,z,t),Uy — fz(w7y;z7t);UZ — fg(LU,y,Z,t)
3. Expérience de Reynolds

Osborne Reynolds (1883) a été le premier a démontrer qu'il existe deux types
d'écoulements de fluides laminaire et turbulent a travers une expérience simple.
L'expérience classique de Reynolds est présentée dans la figure IV.1. L'appareil de Reynolds
est composé de trois composantes essentielles :

e Un réservoir rempli de l'eau,
e Un récipient rempli de colorant,

e Un tube transparent mince, avec une vanne a la sortie du tube pour contréler le
débit de l'eau.

Récipient
1 de colorant

Colorant

1<)

Réservoir

Tube transparent Vanne

Eau

Filet de colorant

Image 1 Figure IV. 1. Expérience de Reynolds
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Lorsque la vanne est ouverte, I'eau dans le réservoir peut circuler dans le tube transparent.
La vitesse d'écoulement est modifiée par la vanne. Une trés petite quantité de colorant
liguide ayant le méme poids spécifique que l'eau est injectée dans le tube comme le
montre la figure IV.1.

Les observations de Reynolds sont :

1. Lorsque la vitesse d'écoulement est faible, le filet de colorant dans le tube se
présente sous la forme d'une ligne droite sans dispersion. Cette ligne droite de filet
de colorant est régulier et parallele a la paroi de tube transparent, dans ce cas,
I'écoulement est laminaire voir la figure 1V.2(a).

2. Avec l'augmentation de débit (donc la vitesse), le filet de colorant n'est plus une ligne
droite, mais il devient ondulé comme le montre la figure IV.2(b).

3. Avec une augmentation supplémentaire du débit, le filet de colorant ondulé s'est
meélangé dans toutes les directions et I'eau s'est vu complétement coloré a la fin du
tube (Voir la figure 1V.2(c)).

Dans ce cas, les particules fluides du colorant se déplacent de maniére aléatoire, ce qui
montre le cas de |'écoulement turbulent.

Tube en verre

\

Eau

[
Filet de colorant droite

Image 2 Figure IV. 2. Types d’écoulements dans une conduite, (a) Laminaire

Tube en verre
\

Eau

/\<\J

Filet de colorant ondulé

Image 3 Figure IV. 2. Types d'écoulements dans une conduite, (b) Transitoire
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Tube en verre
s— — 7

Eau e

/\/'<,;,,_,_\, SR

e

Filet de colorant mélangé

Image 4 Figure |V. 2. Types d’écoulements dans une conduite, (c) Turbulent
3.1. Nombre de Reynolds

Aprés I'expérience de Reynolds, d'autres études ont montré que le régime d'écoulement
dans les conduites circulaire ne dépend pas uniguement de la vitesse de fluide, mais aussi
de la viscosité, de la masse volumique du fluide et du diametre inférieur de la conduite.
Ces variables ont été regroupées pour former une quantité appelée nombre de Reynolds.
Le nombre de Reynolds est une quantité sans dimension (pas d’'unité), noté Re. Il est défini
dans le cas d'une conduite circulaire par la relation suivante :

.U.D
Re _ P __ U.D

u v
Formule 1
Ou:
p : la masse volumique de fluide en kg/m?,
U : la vitesse moyenne de I'écoulement a travers la section en m/s,
D :le diameétre de la conduite en m,

u : la viscosité dynamique de fluide en kg/m.s,

U : la viscosité cinématique de fluide en m?/s.

4. Régime d’écoulement

Le régime d'écoulement d'un fluide est divisé en deux types d'écoulements en fonction du
nombre de Reynolds Re, tel que :

¢ Sile nombre de Re est faible <2000 : 'écoulement est appelé laminaire,

e Sile nombre de Re entre 2000 et 4000 : I'écoulement transitoire peut étre laminaire
ou turbulent,

e Sile nombre de Re est grand > 4000, on parle d'écoulement turbulent.



DYNAMIQUE DES FLUIDES REELS INCOMPRESSIBLES

4.1. L'écoulement laminaire

& Définition :

L'écoulement laminaire est défini comme le type d'écoulement dans lequel les particules
de fluide se déplacent a travers des lignes de courant droites et paralleles. Ainsi, les
couches de fluide s'écoulent en paralléle les unes aux autres sans se mélanger. D'autre
part, les échanges d'énergie entre les couches de fluides sont réduits. L'écoulement
laminaire peut étre obtenu en cas de faibles vitesses et aussi lorsque le fluide est tres
visqueux.

Dans une conduite circulaire de diameétre constante, le mouvement des particules fluide
est ordonné suivant des lignes droites paralleles aux parois de la conduite voir la figure IV.3.
Ainsi, le profil de la distribution des vitesses est de forme parabolique.

Conduite

\

Fluide

Ligne de
courant

Image 2 Figure |V. 3. Ecoulement laminaire dans une conduite circulaire

4.2. L'écoulement turbulent

& Définition :

L'écoulement turbulent est ce type d'écoulement dans lequel les particules de fluide se
déplacent d'une maniere aléatoire (irréguliere) (Voir figure IV.4). En raison du mouvement
aléatoire des particules de fluide, il se produit des tourbillons qui sont responsables d'une
perte d'énergie cinétigue importante.

Dans le cas, d'une conduite circulaire de diametre constante, le mouvement des particules
fluide est aléatoire dans la conduite voir la figure IV.4. Ainsi, dans ce type d'écoulement, le
profil de la distribution des vitesses est quasi uniforme.

Conduite

N\

Fluide

Lignes de
courant

@

Image 3 Figure IV. 4. Ecoulement turbulent dans une conduite circulaire
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5. Pertes de charges

Lorsgu’un fluide réel s'écoule dans une conduite, un canal ou d'autre voie, le fluide subit
une certaine résistance qui crée une perte de partie d'énergie du fluide. Cette perte
d'énergie (ou de charge) AHT peut étre classée en deux types:

e les pertes de charges linéaires AH|,
e Les pertes de charges singuliéres AHg.
AHr=)> AH; + AH,

Formule 2

5.1. Pertes de charges linéaires

La perte de charge (ou d'énergie) linéaire AH| (réguliére) qui est observée sur toute la
longueur, est proportionnelle a la longueur de la conduite. Elle est engendrée par les
forces de frottement entre les molécules et la paroi de la conduite et entre les molécules
elles-mémes voir la figure IV.5. Cette perte de charge est importante dans les conduites
longues par rapport a la perte de charge singuliére.

Conduite

5
L
)

]
i
]
Al Fluide I
-. ....... _p;.:_._._._._._._.;i_éa{léﬁi I 14— o ‘
]
il
1

Figure IV. 5. Conduite circulaire horizontale uniforme

Considérons un fluide réel incompressible s'écoule a travers une conduite circulaire droite.
Soit 1-1 et 2-2 deux sections droites dans la conduite comme indiqué sur la figure IV.5.
L'équation de Bernoulli, entre les deux sections d'une méme ligne de courant pour un
régime d'écoulement permanent est donnée comme suite :

Py Up Py Uy

L4ty =24 2+ AH

pg T3y TAT gt ag TR L

Formule 3

Ou:

AH| :les pertes de charges linéaires dans la conduite.
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® Conseil

Comme la conduite est horizontale et uniforme (section constante),ona z;=zy, et Aj = Ay =
A. Ainsi, le débit est constant dans la conduite, on a Uy = U, = U. I'équation (IV-3) devient :

b _ B _ bH-P
bg — pg T AHp = AHp = p.g

Formule 4

© Complément

D'autre part, les forces agissant sur le fluide dans la conduite entre les deux sections 1-1 et
2-2sont:

1. Force de pression de fluide dans le sens de 'écoulement a la section 1-1 est P1.A; =
Pi.A,
2. Force de pression de fluide opposée a la direction de I'écoulement a la section 2-2 est
p2.A2 = p2.A,
3. Force de frottement entre le fluide et la paroi de la conduite : F = f'.n.D.L.UZ
Le bilan des forces entre les deux sections 1-1 et 2-2 suivant I'axe de la conduite est :
PLA-P,A—-F=0
(P —P).A=F = f’.m.D.L.U?

"m.D.L.U?
Pl - P2 = fT

En remplacant I'équation précédente dans I'équation (IV-4), on obtient :

_ f’m.D.LU?
AHL o p.g.A

Ainsi, en remplacant la section de la conduite par A = nD?/4, on trouve :

A LU?
AHL - p.g.D
Formule 5

En mettant (f'/p) = (f/2), ou f est le coefficient de frottement, I'équation (IV-5), devient :

4.f.L.U?
AHL = g.g.D

L'équation (IV-6) est appelée équation de Darcy'-Weisbach? Cette équation est
couramment utilisée pour calculer la perte de charge linéaire liée au frottement dans les
conduites circulaires droites. En mettant A = 4.f I'équation (I\V-6), devient :

\.L.U?
AHL = 2.9.D

Formule 6
Ou:
L:la longueur de conduite en m,

A :le coefficient de perte de charge linéaire ou coefficient de Darcy-Weisbach sans unité.
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a) Coefficient de perte de charge linéaire

Le coefficient de perte de charge linéaire dépend du régime d'écoulement et en
particulier du nombre de Reynolds Re:

e Si 'écoulement d'un fluide est laminaire la solution théorique (ou exacte) de
coefficient de perte de charge linéaire A, est définie par la relation de Poiseuille

suivante:
__ 64
A= T
Formule 7

e Sj |I'écoulement d'un fluide est turbulent, il N'existe pas une relation exacte entre le
coefficient de perte de charge linéaire A, et le nombre de Reynolds Re. D'autre part,
les formules expérimentales le plus utilisées pour trouve le coefficient A, sont :

1. Formule proposée par Von Karman? (parois lisses voir la figure IV.6) :

L = 2 log(—25L_
Og(Re.wA))

Formule 8

Fluide

Image 4 Figure IV. 6. Ecoulement dans une paroi lisse

2. Formule proposée par Nikuradse “(parois rugueuses voir la figure IV.7) :

1 9]
NGy og(

Formule 9

3,7€.D )

Ou:
€ :la rugosité absolue équivalente de la paroi en mm,
D:le diametre de la conduite en mm.

s.file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%204.docx#_ftnl
«.file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%204.docx#_ftnl
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Fluide

Image 2 Figure IV. 7. Ecoulement dans une paroi rugueuse
3. Formule proposée par Colebrook® (parois lisses et rugueuses) :
1 _ € 2.51
= —2.log( 5 + )

o)) R../(N)

Formule 10
Ou:
€ : la rugosité absolue équivalente de la paroi en mm,

D :le diameétre de la conduite en mm.

O Exemple :

Le tableau IV.1 montre les valeurs de rugosités équivalentes pour quelques types de
conduites couramment utilisées :

Matériaux des conduites Valeurs de la rugosité absolue équivalente € en (mm)
Verre, Plastique (lisse) 0.0
Béton 0,3a3,0
Cuivre 0,0015
Fonte 0,26
Acier inoxydable 0,002
Acier conmmercial standard 0,045

Tableau 1 Tableau IV. 1. Valeurs de rugosité équivalentes de quelques types de conduites

Les équations (IV-9) et (IV-11) sont des équations non-linéaires qui peuvent étre résolues
numériguement par des méthodes itératives comme le point fixe :

1 e 2.51
(i) 2.10g( 3,7.D * Re-\/m)

On arréte les calculs dés que les valeurs des A; et Aj,; sont trés proches.

s.file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%204.docx#_ftnl
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b) Diagramme de Moody-Stanton

Le diagramme de Moody[1]°-Stanton représente le coefficient de perte de charge linéaire
de Darcy-Weisbach, A, des conduites en fonction du nombre de Reynolds et la rugosité
relative (¢/D) (voir la figure IV.8). Il est permet de calculer le coefficient de perte de charge
linéaire dans une conduite circulaire. Le diagramme de Moody montre que:

1. SiI'écoulement est laminaire :

a) Le coefficient A, est indépendant de ¢/D de la paroi voir I'’équation (IV-8)

b) Le coefficient A, est diminué avec 'augmentation du nombre de Reynolds.
2.Sil'écoulement est turbulent et la paroi est lisse :

a) La rugosité relative de la paroi est zéro (¢/D = 0),

b) Le coefficient A, est faible, mais n'est pas nul (il existe toujours des pertes de
charge).

3.Sile nombre de Reynolds est trés grand :
a) Le coefficient A, est indépendant du nombre de Reynolds voir I'équation (IV-10).

b) Le régime est appelé écoulement completement turbulent.

N\ . Complétement turbulent
-

M 0.04

\ 0.03

N\,
N

\
— oy 0.02
= - 0.015
o ~,
& 0.04 > =~
2 - 0.01 [a)
E | = 0.008
o [ > - 0.006
= 0.03 i 2
) | 0.004 ‘2
2 | <
Z f =
aﬂ 025 | e
2 : 0.002
° | E
5 002 v 001 &
R o i 0.0008
& Régime LE 0.0006 Cd:
H laminaire | Turbulent "N 0.0004
= X
© 0.015}-
@

Conduites
lisses

Régime
transitoire
0.01~
0.009-
annal | | HITTE | LS | |

Image 5 Figure IV. 8. Diagramme de Moody-Stanton

A AnANY

5.2. Pertes de charges singuliéres

La perte de charge (ou I'énergie) singuliere AHg qui est due aux différents éléments de
construction et aux obstacles locaux dans les conduites. Elle est engendrée par le
changement de la direction ou de la valeur de vitesse du fluide et lorsque des dispositifs
(codes, vannes, ..) sont disposés sur la trajectoire d'écoulement. Cette perte de charge
comprend plusieurs cas tels que : Elargissement ou rétrécissement brusque de conduite,

Entrée ou sortie dans un réservoir, Coude, Branchement, dérivation, Diffuseur ou confiseur
conigue, Robinet, Vanne, Crépine, ...

Les pertes de charges singuliéres sont calculées par la relation suivante :
_ . U
AH, = k. 59

Formule 11

s.file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%204.docx#_ftn1
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Ou:
k : le coefficient de perte de charge singuliére, sa valeur de k est vairée en fonction du type
de singularité.

a) Exemple d’'élargissement brusque

On considere un fluide s'écoule a travers une conduite qui a un élargissement brusque.
Deux sections dans la conduite (1-1) et (2-2) situées avant et aprés ['élargissement
respectivement comme le montre la figure IV.9.

Turbulence

P, @ @ N
1 = — A
U, G — &
Al j:i ;\ A,

= —

—

E) e

@ ®

Image 6 Figure IV. 9. Elargissement brusque dans une conduite circulaire

Selon [ (1)] le coefficient de perte de charge singuliére d'un élargissement brusque dans
une conduite circulaire est calculé par :

AH, = WU U A

2.9  2g°\" A 2.9

b) Quelques valeurs de coefficient de pertes de charges singuliéres

O Exemple :

Le tableau V.2 présente quelques valeurs de coefficient de perte de charge singuliere, k
pour des dispositifs et des géométries couramment utilisés.

E Conduite
\ Entrée brusque dans une conduite qui relié a un
Réservorr grand réservoir :
k=05
5

Réservoir entrée

14
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Code arrondi

k =0.75

code

6. Théoreme de Bernoulli appliqué a un fluide réel

Dans le cas d'un fluide réel dans une conduite circulaire, il y a donc toujours des pertes
d'énergie importantes qui sont liées aux frottements. En supposant que la conduite est
équipée de machine hydraulique (pompe hydraulique et/ou turbine hydraulique).
L'équation de Bernoulli généralisée pour les fluides réels incompressibles en régime
permanent, avec/ou sans échange de travail, entre deux points (1) et (2) d'une méme ligne
de courant est donnée par la relation suivante :

P1 U12 _ P2 U22

E+Tg+zl+hp— ﬂ—g+m+22+hT+AHT

Formule 12

Ou:
AH+t : les pertes de charges totales entre les deux points (1) et (2).

15



Mentions légales

Ce module est publié sous licence Creative Commons Attribution 4.0 International (CC BY
4.0)

Vous étes autorisé a copier, distribuer, modifier et utiliser ce contenu a condition d'en
attribuer la paternité a l'auteur : Noureddine AZZAM - Université Fréres Mentouri

Constantine 1.

16



	Mécanique des Fluides
	Table des matières
	DYNAMIQUE DES FLUIDES REELS INCOMPRESSIBLES
	Introduction
	Type d’écoulements d’un fluide
	Écoulements uniforme ou non-uniforme
	Écoulement rotationnel ou irrotationnel
	Écoulement uni, bi ou tridimensionnel

	Expérience de Reynolds
	Nombre de Reynolds

	Régime d’écoulement
	L’écoulement laminaire
	L’écoulement turbulent

	Pertes de charges
	Pertes de charges linéaires
	Coefficient de perte de charge linéaire
	Diagramme de Moody-Stanton

	Pertes de charges singulières
	Exemple d’élargissement brusque
	Quelques valeurs de coefficient de pertes de charges singulières


	Théorème de Bernoulli appliqué à un fluide réel

	Mentions légales

