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I DYNAMIQUE DES FLUIDES
REELS INCOMPRESSIBLES

1. Introduction

Dans le chapitre précédent, nous avons traité la dynamique des fluides parfaits
incompressibles, sans prendre en considération l’effet de la viscosité et la compressibilité. Ce
chapitre comprend l’étude de la dynamique des fluides réels (visqueux) incompressibles.
Dans ce cas, les forces dues à la compressibilité sont nulles, mais les forces dues à la viscosité
d’un fluide sont considérées. Ces forces de frottement agissant entre les particules de fluide
et les parois, ainsi qu’entre les particules de fluide elles-mêmes. La présence de ces forces
entraine une dissipation d’énergie, car d’une partie de l’énergie totale du fluide va se
transformer en énergie thermique due au frottement.

2. Type d’écoulements d’un fluide

L’écoulement d’un fluide est défini comme le mouvement des fluides. Dans la mécanique
des fluides, il existe plusieurs types d’écoulement tels que  : Écoulement permanent ou
non-permanent, Écoulement laminaire ou turbulent, Écoulement uniforme ou non-
uniforme, Écoulement rotationnel ou irrotationnel, et Écoulement uni, bi, ou
tridimensionnel.

2.1. Écoulements uniforme ou non-uniforme

Dans un écoulement uniforme, toutes les caractéristiques et propriétés (vitesse, pression,
la masse volumique, …) de l’écoulement ne varient pas d’un point à un autre sur une
section donnée. C’est-à-dire pas de déformation et pas de rotation d’écoulement. À titre
d’exemple, la vitesse, U, ne dépend pas de la position, s. Mathématiquement, nous avons :
∂U
∂s

= 0

Où :

∂U : la variation de vitesse,

∂s : la variation da distance dans la direction s.

Par contre, un écoulement non-uniforme toutes les caractéristiques et propriétés (vitesse,
pression, la masse volumique, …) de l’écoulement changent d’un point à un autre sur une
section donnée. Par exemple, la vitesse, U, dépend de la position, s. Mathématiquement,
nous avons :
∂U
∂s ≠ 0

2.2. Écoulement rotationnel ou irrotationnel

Dans un écoulement rotationnel les particules de fluide s'écoulent le long des lignes de
courant et tournent autour de leur propre axe. Par exemple, la vitesse, U, dans un
écoulement rotationnel est donnée par la relation suivante :

→Rot →U = 0
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Par contre, un écoulement irrotationnel les particules de fluide s’écoulent le long des
linges de courant, sans rotation. L’écoulement d’un fluide parfait est toujours irrotationnel.
À titre d’exemple, la vitesse, U, dans un écoulement irrotationnel est donnée par la relation
suivante :

→Rot →U ≠ 0

2.3. Écoulement uni, bi ou tridimensionnel

Lorsqu’un écoulement est unidimensionnel toutes les caractéristiques et propriétés
(vitesse, pression, la masse volumique, …) de l’écoulement dépends du temps et une seule
direction. Par exemple, la vitesse U est en fonction du temps, t, et une seule variable x.

Ux = f(x,t),Uy = 0,Uz = 0,

Par contre, si l’écoulement bidimensionnel toutes les caractéristiques et propriétés
(vitesse, pression, la masse volumique, …) de l’écoulement dépends du temps et deux
directions. Par exemple, la vitesse U est en fonction du temps, t, et les deux variables x et y.

Ux = f1(x,y,t),Uy = f2(x,y,t),Uz = 0

D’autre part, dans l’écoulement tridimensionnel, toutes les caractéristiques et propriétés
(vitesse, pression, la masse volumique, …) de l’écoulement dépends du temps, et trois
directions (dans l’espace). Par exemple, la vitesse U est en fonction du temps t, et les trois
variables x, y et z.

Ux = f1(x,y,z,t),Uy = f2(x,y,z,t),Uz = f3(x,y,z,t)

3. Expérience de Reynolds

Osborne Reynolds (1883) a été le premier à démontrer qu’il existe deux types
d’écoulements de fluides laminaire et turbulent à travers une expérience simple.
L’expérience classique de Reynolds est présentée dans la figure IV.1. L’appareil de Reynolds
est composé de trois composantes essentielles :

Un réservoir rempli de l'eau,

Un récipient rempli de colorant,

Un tube transparent mince, avec une vanne à la sortie du tube pour contrôler le
débit de l’eau.

Image 1 Figure IV. 1. Expérience de Reynolds
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Lorsque la vanne est ouverte, l'eau dans le réservoir peut circuler dans le tube transparent.
La vitesse d'écoulement est modifiée par la vanne. Une très petite quantité de colorant
liquide ayant le même poids spécifique que l'eau est injectée dans le tube comme le
montre la figure IV.1.

Les observations de Reynolds sont :

1. Lorsque la vitesse d'écoulement est faible, le filet de colorant dans le tube se
présente sous la forme d'une ligne droite sans dispersion. Cette ligne droite de filet
de colorant est régulier et parallèle à la paroi de tube transparent, dans ce cas,
l'écoulement est laminaire voir la figure IV.2(a).

2. Avec l'augmentation de débit (donc la vitesse), le filet de colorant n'est plus une ligne
droite, mais il devient ondulé comme le montre la figure IV.2(b).

3. Avec une augmentation supplémentaire du débit, le filet de colorant ondulé s'est
mélangé dans toutes les directions et l’eau s’est vu complètement coloré à la fin du
tube (Voir la figure IV.2(c)).

Dans ce cas, les particules fluides du colorant se déplacent de manière aléatoire, ce qui
montre le cas de l'écoulement turbulent.

Image 2 Figure IV. 2. Types d’écoulements dans une conduite, (a) Laminaire

Image 3 Figure IV. 2. Types d’écoulements dans une conduite, (b) Transitoire

DYNAMIQUE DES FLUIDES REELS INCOMPRESSIBLES
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Image 4 Figure IV. 2. Types d’écoulements dans une conduite, (c) Turbulent

3.1. Nombre de Reynolds

Après l’expérience de Reynolds, d’autres études ont montré que le régime d’écoulement
dans les conduites circulaire ne dépend pas uniquement de la vitesse de fluide, mais aussi
de la viscosité, de la masse volumique du fluide et du diamètre inférieur de la conduite.
Ces variables ont été regroupées pour former une quantité appelée nombre de Reynolds.
Le nombre de Reynolds est une quantité sans dimension (pas d’unité), noté Re. Il est défini
dans le cas d’une conduite circulaire par la relation suivante :

Re =
ρ.U .D
µ = U .D

ν

Formule 1

Où :

ρ : la masse volumique de fluide en kg/m3,

U : la vitesse moyenne de l’écoulement à travers la section en m/s,

D : le diamètre de la conduite en m,

µ : la viscosité dynamique de fluide en kg/m.s,

υ : la viscosité cinématique de fluide en m2/s.

4. Régime d’écoulement

Le régime d’écoulement d’un fluide est divisé en deux types d’écoulements en fonction du
nombre de Reynolds Re, tel que :

Si le nombre de Re est faible < 2000 : l’écoulement est appelé laminaire,

Si le nombre de Re entre 2000 et 4000 : l’écoulement transitoire peut être laminaire
ou turbulent,

Si le nombre de Re est grand > 4000, on parle d'écoulement turbulent.

DYNAMIQUE DES FLUIDES REELS INCOMPRESSIBLES
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4.1. L’écoulement laminaire

 Définition :

L’écoulement laminaire est défini comme le type d'écoulement dans lequel les particules
de fluide se déplacent à travers des lignes de courant droites et parallèles. Ainsi, les
couches de fluide s’écoulent en parallèle les unes aux autres sans se mélanger. D’autre
part, les échanges d’énergie entre les couches de fluides sont réduits. L’écoulement
laminaire peut être obtenu en cas de faibles vitesses et aussi lorsque le fluide est très
visqueux.

Dans une conduite circulaire de diamètre constante, le mouvement des particules fluide
est ordonné suivant des lignes droites parallèles aux parois de la conduite voir la figure IV.3.
Ainsi, le profil de la distribution des vitesses est de forme parabolique.

Image 2 Figure IV. 3. Écoulement laminaire dans une conduite circulaire

4.2. L’écoulement turbulent

 Définition :

L’écoulement turbulent est ce type d'écoulement dans lequel les particules de fluide se
déplacent d’une manière aléatoire (irrégulière) (Voir figure IV.4). En raison du mouvement
aléatoire des particules de fluide, il se produit des tourbillons qui sont responsables d'une
perte d'énergie cinétique importante.

Dans le cas, d’une conduite circulaire de diamètre constante, le mouvement des particules
fluide est aléatoire dans la conduite voir la figure IV.4. Ainsi, dans ce type d’écoulement, le
profil de la distribution des vitesses est quasi uniforme.

Image 3 Figure IV. 4. Écoulement turbulent dans une conduite circulaire

DYNAMIQUE DES FLUIDES REELS INCOMPRESSIBLES
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5. Pertes de charges

Lorsqu’un fluide réel s’écoule dans une conduite, un canal ou d’autre voie, le fluide subit
une certaine résistance qui crée une perte de partie d’énergie du fluide. Cette perte
d'énergie (ou de charge) ΔHT peut être classée en deux types :

Les pertes de charges linéaires ΔHL,

Les pertes de charges singulières ΔHS.

ΔHT = ∑ΔHL + ΔHs

Formule 2

5.1. Pertes de charges linéaires

La perte de charge (ou d’énergie) linéaire ΔHL (régulière) qui est observée sur toute la
longueur, est proportionnelle à la longueur de la conduite. Elle est engendrée par les
forces de frottement entre les molécules et la paroi de la conduite et entre les molécules
elles-mêmes voir la figure IV.5. Cette perte de charge est importante dans les conduites
longues par rapport à la perte de charge singulière.

Figure IV. 5. Conduite circulaire horizontale uniforme

Considérons un fluide réel incompressible s’écoule à travers une conduite circulaire droite.
Soit 1-1 et 2-2 deux sections droites dans la conduite comme indiqué sur la figure IV.5.
L’équation de Bernoulli, entre les deux sections d’une même ligne de courant pour un
régime d’écoulement permanent est donnée comme suite :

P1

ρ.g +
U 2

1

2.g + z1 = P2

ρ.g +
U 2

2

2.g + z2 + ΔHL

Formule 3

Où :

ΔHL : les pertes de charges linéaires dans la conduite.

DYNAMIQUE DES FLUIDES REELS INCOMPRESSIBLES
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 Conseil :

Comme la conduite est horizontale et uniforme (section constante), on a z1 = z2, et A1 = A2 =
A. Ainsi, le débit est constant dans la conduite, on a U1 = U2 = U. l’équation (IV-3) devient :

P1

ρ.g = P2

ρ.g + ΔHL ⇒ ΔHL = P1−P2

ρ.g

Formule 4

 Complément :

D’autre part, les forces agissant sur le fluide dans la conduite entre les deux sections 1-1 et
2-2 sont :

1. Force de pression de fluide dans le sens de l’écoulement à la section 1-1 est P1.A1 =
P1.A,

2. Force de pression de fluide opposée à la direction de l’écoulement à la section 2-2 est
P2.A2 = P2.A,

3. Force de frottement entre le fluide et la paroi de la conduite : F = f’.л.D.L.U2.

Le bilan des forces entre les deux sections 1-1 et 2-2 suivant l’axe de la conduite est :

En remplaçant l’équation précédente dans l’équation (IV-4), on obtient :

ΔHL = f'.π.D.L.U 2

ρ.g.A

Ainsi, en remplaçant la section de la conduite par A = лD2/4, on trouve :

ΔHL =
4.f'.L.U 2

ρ.g.D

Formule 5

En mettant (f’/ρ) = (f/2), où f est le coefficient de frottement, l’équation (IV-5), devient :

ΔHL =
4.f.L.U 2

2.g.D

L’équation (IV-6) est appelée équation de Darcy1-Weisbach2. Cette équation est
couramment utilisée pour calculer la perte de charge linéaire liée au frottement dans les
conduites circulaires droites. En mettant λ = 4.f l’équation (IV-6), devient :

ΔHL = λ.L.U 2

2.g.D

Formule 6

Où :

L : la longueur de conduite en m,

λ : le coefficient de perte de charge linéaire ou coefficient de Darcy-Weisbach sans unité.

P1.A − P2.A − F = 0

(P1 − P2).A = F = f'.π.D.L.U 2

P1 − P2 = f'.π.D.L.U 2

A

1. file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%204.docx#_ftn1
2. file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%204.docx#_ftn2

DYNAMIQUE DES FLUIDES REELS INCOMPRESSIBLES

10

file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%204.docx#_ftn1
file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%204.docx#_ftn2


a) Coefficient de perte de charge linéaire

Le coefficient de perte de charge linéaire dépend du régime d’écoulement et en
particulier du nombre de Reynolds Re :

Si l’écoulement d’un fluide est laminaire la solution théorique (ou exacte) de
coefficient de perte de charge linéaire λ, est définie par la relation de Poiseuille
suivante :

λ = 64
Re

Formule 7

Si l’écoulement d’un fluide est turbulent, il n’existe pas une relation exacte entre le
coefficient de perte de charge linéaire λ, et le nombre de Reynolds Re. D’autre part,
les formules expérimentales le plus utilisées pour trouve le coefficient λ, sont :

1. Formule proposée par Von Karman3 (parois lisses voir la figure IV.6) :
1

√(λ)
= −2. log( 2.51

Re.√(λ)
)

Formule 8

Image 4 Figure IV. 6. Écoulement dans une paroi lisse

2. Formule proposée par Nikuradse 4(parois rugueuses voir la figure IV.7) :
1

√(λ)
= −2. log( ε

3,7.D )

Formule 9

Où :

ε : la rugosité absolue équivalente de la paroi en mm,

D : le diamètre de la conduite en mm.

3. file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%204.docx#_ftn1
4. file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%204.docx#_ftn1
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Image 2 Figure IV. 7. Écoulement dans une paroi rugueuse

3. Formule proposée par Colebrook5 (parois lisses et rugueuses) :
1

√(λ)
= −2. log( ε

3,7.D + 2.51

Re.√(λ)
)

Formule 10

Où :

ε : la rugosité absolue équivalente de la paroi en mm,

D : le diamètre de la conduite en mm.

 Exemple :

Le tableau IV.1 montre les valeurs de rugosités équivalentes pour quelques types de
conduites couramment utilisées :

Tableau 1 Tableau IV. 1. Valeurs de rugosité équivalentes de quelques types de conduites

Les équations (IV-9) et (IV-11) sont des équations non-linéaires qui peuvent être résolues
numériquement par des méthodes itératives comme le point fixe :

1
√(λi+1)

= −2. log( ε
3,7.D + 2.51

Re.√(λi)
)

On arrête les calculs dès que les valeurs des λi et λi+1 sont très proches.

5. file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%204.docx#_ftn1
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b) Diagramme de Moody-Stanton

Le diagramme de Moody[1]6-Stanton représente le coefficient de perte de charge linéaire
de Darcy-Weisbach, λ, des conduites en fonction du nombre de Reynolds et la rugosité
relative (ε/D) (voir la figure IV.8). Il est permet de calculer le coefficient de perte de charge
linéaire dans une conduite circulaire. Le diagramme de Moody montre que :

1. Si l’écoulement est laminaire :

a) Le coefficient λ, est indépendant de ε/D de la paroi voir l’équation (IV-8)

b) Le coefficient λ, est diminué avec l’augmentation du nombre de Reynolds.

2. Si l’écoulement est turbulent et la paroi est lisse :

a) La rugosité relative de la paroi est zéro (ε/D = 0),

b) Le coefficient λ, est faible, mais n’est pas nul (il existe toujours des pertes de
charge).

3. Si le nombre de Reynolds est très grand :

a) Le coefficient λ, est indépendant du nombre de Reynolds voir l’équation (IV-10).

b) Le régime est appelé écoulement complètement turbulent.

Image 5 Figure IV. 8. Diagramme de Moody-Stanton

5.2. Pertes de charges singulières

La perte de charge (ou l’énergie) singulière ΔHs qui est due aux différents éléments de
construction et aux obstacles locaux dans les conduites. Elle est engendrée par le
changement de la direction ou de la valeur de vitesse du fluide et lorsque des dispositifs
(codes, vannes, …) sont disposés sur la trajectoire d’écoulement. Cette perte de charge
comprend plusieurs cas tels que : Élargissement ou rétrécissement brusque de conduite,
Entrée ou sortie dans un réservoir, Coude, Branchement, dérivation, Diffuseur ou confiseur
conique, Robinet, Vanne, Crépine, ...

Les pertes de charges singulières sont calculées par la relation suivante :

ΔHs = k. U 2

2.g

Formule 11

6. file:///E:/Cours%20GT/MDF/Cours/Polycopi%C3%A9%20MDF%20%C3%A9tudiant%20chapitre%204.docx#_ftn1
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Où :

k : le coefficient de perte de charge singulière, sa valeur de k est vairée en fonction du type
de singularité.

a) Exemple d’élargissement brusque

On considère un fluide s’écoule à travers une conduite qui a un élargissement brusque.
Deux sections dans la conduite (1-1) et (2-2) situées avant et après l'élargissement
respectivement comme le montre la figure IV.9.

Image 6 Figure IV. 9. Élargissement brusque dans une conduite circulaire

Selon [  (1)] le coefficient de perte de charge singulière d’un élargissement brusque dans
une conduite circulaire est calculé par :

b) Quelques valeurs de coefficient de pertes de charges singulières

 Exemple :

Le tableau IV.2 présente quelques valeurs de coefficient de perte de charge singulière, k
pour des dispositifs et des géométries couramment utilisés.

Réservoir entrée

Entrée brusque dans une conduite qui relié à un
grand réservoir :

k = 0.5

ΔHs =
(U 2

1 −U 2
2 )2

2.g =
U 2

1

2.g .(1 − A1

A2
)

2
= k.

U 2
1

2.g

k = (1 − A1

A2
)

2

DYNAMIQUE DES FLUIDES REELS INCOMPRESSIBLES
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code

Code arrondi

 

k = 0.75

6. Théorème de Bernoulli appliqué à un fluide réel

Dans le cas d’un fluide réel dans une conduite circulaire, il y a donc toujours des pertes
d’énergie importantes qui sont liées aux frottements. En supposant que la conduite est
équipée de machine hydraulique (pompe hydraulique et/ou turbine hydraulique).
L'équation de Bernoulli généralisée pour les fluides réels incompressibles en régime
permanent, avec/ou sans échange de travail, entre deux points (1) et (2) d’une même ligne
de courant est donnée par la relation suivante :

P1

ρ.g +
U 2

1

2.g + z1 + hp = P2

ρ.g +
U 2

2

2.g + z2 + hT + ΔHT

Formule 12

Où :

ΔHT : les pertes de charges totales entre les deux points (1) et (2).
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Mentions légales

Ce module est publié sous licence Creative Commons Attribution 4.0 International (CC BY
4.0)

Vous êtes autorisé à copier, distribuer, modifier et utiliser ce contenu à condition d’en
attribuer la paternité à l’auteur : Noureddine AZZAM – Université Frères Mentouri
Constantine 1.
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