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Exercice 1 : 

L’eau s’écoule à travers une conduite horizontale AB de diamètre DAB = 10cm avec une vitesse moyenne de UAB =2m/s. 

Cette conduite est liée avec d’autre conduite BC de diamètre DBC = 18cm. La conduite BC, se divise en deux branches 

CD et CE (Voir la figure). La vitesse moyenne d’écoulement dans la conduite CE est de UCE = 3m/s. Sachant que le débit 

volumique QvCD de la conduite CD est égale QvAB/3. Calculer : 

1. Le débit volumique et le débit massique dans la conduite AB, 

2. Les vitesses moyennes d’écoulement dans les conduites BC et CD, 

3. Le diamètre de la conduite CE. 

On donne : g = 9.81 m/s2, ρ = 1000kg/m3, DCD = 5cm. 

 
 

Exercice 2 : 

Un réservoir de grande section A1 ouvert à l’atmosphère rempli d’eau, s’écoule à travers un orifice. Cet orifice est situé au 

fond du réservoir avec une forme rectangulaire de 0.2m de largeur et 0.3m de longueur. Au début, la hauteur d’eau dans le 

réservoir est de 5m comme indiqué sur la figure ci-dessous. Calculer : 

1. Le débit volumique de vidange, 

2. Le temps théorique de vidange jusqu’à la hauteur d’eau dans le réservoir est de 2m, 

3. Le temps pour vider le réservoir complètement, 

On donne : g = 9.81m/s2, la masse volumique de l’eau ρe = 1000kg/m3, z1 = 5m, z2 = 2m, A1 = 12.56m2. Cv = 0.6. 
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SOLUTION DE LA SERIE de TD N°03 

 

Exercice N°01 : 

 

1. Les débits volumique et massique qui traversent la conduite AB sont : 

a. Le débit volumique dans la conduite AB est : 
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b. Le débit massique dans la conduite AB est : 
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A.N : 
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2. Les vitesses moyennes d’écoulement dans les conduites BC et CD : 

On suppose que l’eau est un fluide parfait incompressible et s’écoule en régime permanent, en appliquant 

l’équation de conservation de masse entre les deux conduites AB et BC, on obtient : 

a. La conduite BC : 
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b. La conduite CD : 
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3. Le diamètre de la conduite CE : 

D’après l’équation de continuité le débit volumique est conservé entre l’entrée et la sortie : 

 

4

D
.U

4

D
.U

4

D
.U

A.UA.UA.U

QQQQQQQ

2

CE
CD

2

CE
AB

2

CE
CE

CDCDABABCECE

CDvABvCEvCEvCDvBCvABv


−


=




−=

−=+==

 

 

Le diamètre de la conduite CE, est : 
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Exercice N°2 : 

 

1. La puissance délivrée par la pompe hydraulique est calculée comme suite : 

On suppose que, l’eau est un fluide parfait, l’équation de Bernoulli entre A et C avec échange de travail s’écrite : 
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PC = PA = Patm et UA = 0, on obtient : 
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La vitesse d’écoulement dans la conduite est calculée comme suite : 
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A.N : 
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(2.92)2

2𝑥9.81
+ 21.5 = 21.93𝑚 

 

La puissance fournie de la pompe hydraulique est calculée comme suite : 
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2. La puissance délivrée à la pompe hydraulique est calculée comme suite : 
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3. La pression effective au point B est calculée comme suite : 

L’équation de Bernoulli entre A et B s’écrie : 
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PA = Patm, UA = 0, UC = UB (même débit, même conduite) et la pression Peffe = Pabs – Patm, on obtient : 
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Exercice N°3 ; 

1. La variation de pression dans le col de venturi-mètre est : 
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On suppose que le fluide est parfait. L’équation fondamentale de l’hydrostatique appliquée entre les deux points 

(1) et (2) nous donne : 
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On a : z3 - z4 = -hv et z2 - z1 = L.sinθ 
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2. Le débit volumique traversant le venturi-mètre : 

En appliquant le théorème de Bernoulli entre les deux points (1) et (2) situés sur la même ligne de courant, on 

obtient : 
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Par conséquent, la variation de pression entre les deux points est P1 – P2 = ρeg(-hv + Lsinθ) + ρmghv, en remplaçant 

cette valeur dans l’équation précédente, on obtient : 
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Où z2 - z1 = Lsinθ, on a : 
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D’autre part, en appliquant l’équation de conservation de masse entre les points (1) et (2), nous obtenons :  
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En remplaçant les valeurs de vitesses U1 et U2 dans l’équation précédente, on obtient : 
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Le débit volumique Qv qui traverse le venturi-mètre est : 
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A.N : 
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Exercice N°04 : 

1. Le débit volumique de vidange : 

Comme déjà vue précédemment, la vitesse réelle de vidange d’un réservoir est donnée par la relation suivante : 

 

gh2CU v2 =  

 

Où : 

U2 : la vitesse de vidange d’un réservoir en m/s, 

Cv : le coefficient de vitesse dans ce cas sa valeur est 0.6, 

g : l’accélération de la pesanteur en m/s2, 

h : la hauteur vertical de fluide dans le réservoir en m. 

 

Le débit volumique de vidange est calculé par la relation suivante : 
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A.N : 
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2. Le temps théorique de vidange d’un réservoir : 

Dans le cas général, en temps quelconque la surface libre est à une hauteur, z, voir la figure ci-dessous. Au départ, 

a la surface libre est à z = z1 et à la fin elle est à z = z2. 

 

 

 

Ainsi, l’équation de conservation de masse dans le fluide entre la hauteur quelconque z et la hauteur z2 donne : 
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D’autre part, la vitesse à la hauteur z peut donc également s’écrire par la relation suivante : 
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Le singe (-) parce que le rapport dz/dt est inférieur de zéro. 

On remplaçant l’équation (b) dans l’équation (a), on trouver : 
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On séparant les variables z et t, on trouve : 
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Le temps de vidange de réservoir de z1 à z’1 est donné par l’intégration de l’équation précédente : 

À l’instant initial : temps 0 et hauteur = z1, 

À l’instant d’étudié : temps t et hauteur z’1. 
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Si les sections de l’orifice A2 et de réservoir A1 sont constantes A(z) = A1, on a : 
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Après l’intégration de l’équation précédente, on obtient : 
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a. Le temps nécessaire pour passer de la hauteur initiale z1 = 5m à la hauteur z’1 = 2m : 

A.N : 

À l’instant initial : temps 0 et hauteur = 5m, 

À l’instant d’étudié : temps t et hauteur 2m. 
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b. Le temps de vidange totale t du réservoir, c’est le temps pour passer de z1 à la hauteur z’1 = 0 : 

A.N : 

À l’instant initial : temps 0 et hauteur = 5, 

À l’instant d’étudié : temps t et hauteur 0. 
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Exercice N°05 : 

 

Le débit volumique réel d’huile qui traverse le diaphragme est montré par l’équation (III-22) : 
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Exercice N°06 : 

 

La vitesse moyenne d’écoulement dans la conduite est : 

En supposant que l’eau est un fluide parfait, incompressible et que l’écoulement est permanant. L’application de 

l'équation de Bernoulli le long d’une ligne de courant, entre les deux points (1) et (2), donne : 
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On a z1 = z2, et U2 = 0 : 
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Ainsi, les pressions de deux points (1) et (2) sont : 
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En remplaçant ces valeurs de P1 et P2 dans l’équation précédente, on obtient : 
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Par ailleurs, la variation de pression dans le manomètre est : 
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En remplaçant cette valeur dans l’équation précédente, on obtient : 
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L’expression de la vitesse réelle est : 
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